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ABSTRACT

Multiscale, hybrid computer modeling has emerged as a valuable tool in the fields

of computational systems biology and mathematical oncology. In this work, we present an

overview of the motivations for, and development and implementation of, three hybrid

multiscale models of the mammary gland system and early stage ductal carcinoma in situ

(DCIS) in the gland. Pubertal mammary gland development was described first using a

two-dimensional, lattice-based hybrid agent-based model description of the mammary

terminal end bud (TEB), and then with a three-dimensional lattice-free TEB model. Both

models implement a discrete, agent-based description of the cell scale, and a continuum,

finite element method description of tissue scale spatiotemporal molecular profiles, which
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are explicitly linked into a hybrid model. This lattice-free pubertal development TEB

model was then transitioned into a post-menopausal early stage DCIS model, used for study

of the phenotypic dynamics and molecular signaling disruptions involved in development

of the DCIS tumor mass. Both TEB and DCIS models implemented simplified, literature-

based cellular phenotypic developmental hierarchies and endocrine and paracrine signaling

pathways. All models provided valuable insights into the effects of these aspects on the

development of both the healthy gland and the pre-invasive DCIS cancer state, and results

from model outputs were found to be within literature supported ranges. Cells of both

healthy and cancerous phenotypes were found to be sensitive to changes in molecular

signaling intensities and phenotypic hierarchies, which played an important part in overall

development in both cases, with all cases demonstrating a greater effect of upstream

estrogen paracrine signaling relative to the downstream AREG-FGF epithelial to stromal

pathway also tested. Here, we provide detailed descriptions of these studies and results, as

well as other useful discoveries, and also an overview of the modeling approaches,

techniques, and rationale for their specific designs and implementations.
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CHAPTER 1

Introduction

Over the last decades, mathematical modeling has emerged as a valuable addition

to the more traditional tools used in the study and characterization of biological systems.

Traditional research methods involve the manipulation of living systems (cells, tissues, or

even whole organisms) in clever ways to gain insights into the underlying mechanisms of

their functionality, but these methods are often limited by the wet-lab tools used for

experimental design and characterization, ethical concerns, and time and monetary

restrictions, as well as complications within the living systems themselves. Nonetheless,

traditional methods remain integral in the study and characterization of biological systems,

as the biological system must remain the starting point for all study, and any new research

methods must take inspiration from, and be validated against, data obtained from such

methods.

Taking inspiration from published wet-lab research, mathematical modeling

strives to generate equation-based descriptions of biological systems, often yielding many

new and interesting insights that may not be obvious through bench-level experiments.

Biological systems are bound by the same physical laws as non-biological systems, many

of which have been well characterized and described mathematically through efforts in

other fields. Indeed, the laws of physics, thermodynamics, mechanics, and chemistry

(among others) are all intimately involved in the processes carried out within cells, tissues,

organs, and whole-organism biological systems. Mathematical descriptions of these

physical processes, though historically developed for solving problems in non-biological

fields, have now been shown to be adaptable to biological descriptions as well.
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Mathematical modelers have often strived to describe and quantify processes that

are not easily determined through wet lab techniques. Inherently, the details of mechanisms

within biological systems are often difficult to characterize, as they are 1) incredibly

complex, and 2) occur on extremely small spatial and temporal scales. These limitations in

themselves do not provide insurmountable obstacles to experimental study, but their

occurrence within a living system further compounds these difficulties, often necessitating

the invention of clever and novel experiments and laboratory techniques, which the

experimentalist uses to draw out the desired information. Mathematical modeling has

proven to be a useful addition to these methods, often elucidating the underlying

mechanisms driving the behaviors observed at the benchtop, and providing information

that is not easily obtainable from other methods.

More intriguing still is the potential for mathematical descriptions of biological

systems to be used as predictive tools, especially in clinical settings. The underlying

equations involved in these descriptions depend on parameters or variables whose values

are measured quantitatively from the biological system. When correctly formulated, a

mathematical description of a physical phenomenon does not change in its basic form – it

describes all possible scenarios within the bounds of the assumptions involved in its

derivation, dependent on the variable values it receives as inputs. By inputting correctly

calibrated parameters that apply the governing mathematical description to a specific

circumstance, the equation (or set of equations) may be tuned from a general, broadly

applicable description to one specific to a particular organism, thereby allowing a general

mathematical framework to describe many individualized scenarios.
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To this end, mathematical modeling of biological systems offers the potential of

an exciting new tool: the ability to predict the outcome of a set of system inputs, based on

sound scientific principles and fundamental laws, in a quantified and exacting way.

Accurate prediction reduces the need for trial and error in experimental and clinical studies.

In the lab, researchers can readily identify the most important and promising experiments

to conduct, reducing material and time costs. In the clinic, physicians can optimize

treatment strategies, individualized for their patients, simultaneously reducing costs,

treatment time, and patient, while increasing the likelihood of successful treatment

outcome.

In this work, we will delve into the details of how mathematical models are

developed and implemented, the underlying reasoning behind the selection of modeling

approaches to describe the system of interest, and the motivations for doing so, all with a

focus on modeling cancer and developmental biology. We will then look in detail at new

models developed by the author that provide interesting insights into cell signaling and

phenotypic contributions into the pubertal development of the human mammary gland, as

well as in the post-menopausal initiation of a pre-invasive breast cancer, ductal carcinoma

in situ (DCIS).

I. Mathematical Modeling Approaches

The selection of an appropriate mathematical modeling method is usually

determined by the needs and desired outcomes of the modeler. Commonly, most modeling

approaches of complex phenomena are computationally intensive, and are thus

implemented in a computer-based environment, taking advantage of modern computing
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resources. In biology, this type of computer-based modeling is an approach referred to as

in silico (contrasting with the in vivo and in vitro methods of traditional experimental

biology). Just like at the benchtop, experimental design and chosen methods in silico must

be carefully examined and prioritized to design an experiment with the potential to provide

the modeler with the desired information. Without the proper choice of modeling approach

and implementation, the modeler cannot hope to gain useful information and. In silico, this

choice is often accomplished through intelligent assessment of mathematical modeling

techniques, the resolution (scale) the model implements, and the biological aspects deemed

most important for inclusion to the model.

Generally speaking, the resolution of the model must match the resolution of the

biological processes and/or the effects the modeler intends to study. For example, if a

modeler desires information about the interplay of cell-cell interaction and dynamics of

population phenotypic shifts, the implemented model should include these descriptions, at

a cell-by-cell resolution. Models may even delve down to smaller and more refined scales,

as is the case with the mathematical prediction of protein conformation based on a

simulated reconstruction of the amino acid sequence at an atomic resolution (approaches

include homology modeling, protein threading), or the study of enzyme/receptor-substrate

interaction. When individual entities of interest are described explicitly and uniquely in a

model, it is referred to as a discrete model. Conversely, modeling descriptions of large

numbers of entities often employ coarser descriptions, commonly through a mathematical

description of distributions of the entities of interest (atoms, molecules, cells, etc.) across

a large spatial or temporal scale. These models accumulate information about large

numbers of discrete entities into a single distribution function, whose behavior is described
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mathematically. Such models are known as continuum models, and are often employed

when a single-entity resolution description is either not desired, necessary, or

computationally feasible. Often, discrete and continuum methods are combined together

into a single multiscale or hybrid model that combine the best aspects of both to mitigate

the weaknesses of each. For the interested reader, a more in-depth discussion of hybrid

models than presented here may be found in [1-7].

i. Discrete Modeling Methods

Atoms, molecules, cells, and other building blocks of biological systems are, at a

fine enough resolution, composed of discrete entities. This observation naturally leads to

discrete descriptions, where each discrete entity is represented as an agent, in a method

known as agent-based modeling (ABM). These methods are likely the most intuitive

descriptions, as they are often based on observation, and mirror the structure seen by an

observer in a modeling replication of the system. Indeed, rendered images of these models

and their simulation results may resemble visually observable biological systems in many

ways, providing the model’s designer and users easily interpretable and understandable

observations and insights. The model designer must choose the resolution implemented in

the model, based on the features to be studied and the output needed to evaluate or use the

model result. Generally speaking, this resolution and the modeling technique(s)

implemented are chosen to be the coarsest possible without sacrificing the resolution

needed for the intended study. For example, a model designed to study the dynamics of a

cell population might logically choose the cells themselves as the finest resolution to be

explicitly described in a discrete manner. Within this example cell population, sub-cellular
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scale factors (for example, oxygen consumption or the genetic factors and biochemical

mechanisms involved in cell phenotype selection and expression) are then lumped together

(e.g. as a per volume or per surface area implementation, or through other approximations)

into a “net” cell contribution into the model. In this way, a cell in this example may still

express its phenotype and conduct cellular respiration, but the model avoids the intensive

and often unnecessary computational costs of describing each molecule, organelle, and

chemical reaction within the cell.

This example points to an important aspect of discrete modeling design: what

should the modeler choose to incorporate into the model? While there is not a consensus

on one standard template of what makes a “good” model (nor should there be, due to the

wide range of modeling techniques and uses), generally the features included must

describe, at least, the entities the modeler desires to study (in the case of the work presented

here, the cells in the tissue), the most important literature-supported biologically relevant

factors at this scale (in the case of individual cells, this is often oxygen or glucose, but may

also include other factors), as well as other crucial aspects specific to the entity being

studied (including phenotypic hierarchies, hormonal endocrine and paracrine signaling

mechanisms, etc.). In all cases, the modeler identifies the most relevant factors to the

intended study (e.g., the factors that the literature supports as the most influential in the

behavior to be studied), and chooses these to incorporate into the model. Inherent in this

decision is the exclusion of some (or even many) biological factors. In fact, the system the

modeler wishes to study may not even be fully characterized biologically, limiting any

modeling descriptions to the current threshold of knowledge on the system. Often, this

limitation means that even the most complete modern modeling effort could not possibly
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implement a complete description of the underlying biology! These considerations make

the modeler’s selection of factors to be included of utmost importance, as these are the

factors that may influence the model and the results obtained. Overall, the model design

must be done carefully in order to achieve biologically relevant results. Within discrete

modeling methods, there are many well-established techniques, including lattice-based [8],

lattice-free [7, 9], Cellular Potts [10], lattice gas/Boltzmann [11, 12], and subcellular

methods.

Despite the simplified descriptions implemented in mathematical models, the

inherent complexity of the modeled biological system of interest can quickly become

sophisticated. A cell in a model must contain, at minimum: geographic coordinates, a

cytoplasmic volume, a phenotype, a method of perceiving the passage of time, a way of

determining the surrounding conditions within its microenvironment, a method of making

decisions based on its characteristics and observed behaviors in living specimens, and an

ability to implement the outcomes of its decisions. Describing even a simple action by a

single cell can result in a complex calculation in a discrete model. For example, a cell in

interphase (G phases) increases its cytoplasmic volume over time, expanding the plasma

membrane and increasing the total cell volume and surface area. If this cell is in a cell

population with adjacent neighbors, this expansion is not autonomous – its neighbors must

move or deform to accommodate this volume change. This response can trigger a cascade,

where they in turn deform or displace their neighbors, ultimately resulting in the

disturbance of many cells. In a living system, the laws of physics “solve” this problem

automatically, and the system will naturally adjust on its own; but in a model, these

processes must be represented mathematically and explicitly solved.



www.manaraa.com

8

In practice, the complex problem of movement of a discrete entity (continuing our

example from the previous paragraph, a cell) is solved by either restricting agent movement

to a lattice (like a chess board, where the agent may move from the center of one square to

a neighboring square, but not to positions in between, which simplifies the calculation at

the cost of providing a somewhat artificial agent distribution), or through a Newton’s laws

description of the physics of agent interaction, allowing agents to move based on the forces

of interaction through solution of a series of linked equations. In the lattice-based approach,

a lattice space might hold one cell (or more specifically, a coordinate associated with the

cell, commonly its center of mass, may be at the lattice coordinate), and a cell may only

move to an adjacent lattice coordinate. In this way cells may not occupy any arbitrary

coordinate within the modeled area, but are restricted to a finite set of points within the

computational domain. Thus, in this approach, if a cell moves to an adjacent lattice point,

it must displace the cell that was already occupying that location, should there be a cell

there. The result is often a displacement cascade, where cells continue to be displaced until

one moves into a free lattice coordinate or out of the computational domain. If each lattice

cell is the size of a mature cell, then the effects of a daughter cell growing in interphase

will not be observed, as the cell simply grows to occupy the entire lattice location.

However, some models overcome this limitation by defining the lattice to be smaller than

a cell, effectively refining the model’s resolution, and allowing for observations of cell

movement on a scale smaller than a cell diameter. If the modeler wants to see the effects

of cell growth, such a refined lattice must be implemented (at a potential cost of more

complicated calculations of total cell movement). If cell growth is not of interest in the

model, then the larger lattice can be used with the approximation that each cell is the size
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of an adult cell. This spatially less refined model may be a reasonable approximation, since

the cell will grow to this size at the end of interphase and the details of how it gets there

may not be of interest to the study.

This simple example shows one way a model may be customized to the specific

questions the model is designed to address, and the potential tradeoffs the designer makes

for increased complexity. Relative to a coarser lattice, a finer lattice may be more

computationally complex, or require more calculations per time step, to solve the discrete

movement of all modeled entities. This design consideration may be even avoided all

together by removing the lattice-based movement restriction, but at an even greater

computational cost, both in terms of algorithm complexity and in time to solve the system.

In short, even the simple action of a cell growing presents a potentially complex problem.

Fortunately, as we have seen, the modeler possesses several options to address the problem,

but must make an informed choice well-suited for the particular applications of interest.

In a tissue, cells can also divide, lyse, die, and enter quiescence or senescence

(among other physical changes), and there are often many thousands of cells within a model

(all of which may do one or more of these actions each time step). This range of behavior

means that the process of tracking cell movements quickly explodes into a very

complicated problem. Each time a modeler adds a new parameter, the calculations increase

in complexity. Even the example given above of cell-cell interaction physics was relatively

simplified – in fact, cells can also adhere to each other, adhere to the basement membrane

or extra cellular matrix, experience conformational remodeling through cytoskeletal

actions, and have many other physical effects on and in response to their surroundings. To

incorporate each one of these behaviors into the model may require the addition of one or
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more equations per cell, or per contact point between a cell and the entities it interacts with

(possibly as many as 10+ contact points per cell in 3D configurations, applied to each of

thousands of cells).

Despite these challenges, modelers have made great accomplishments through

development of complex and interesting descriptions of biological systems. Gerlee and

Anderson used ABM to yield interesting insights into the evolutionary dynamics of tumor

growth and the interplay between cells in the tumor and their microenvironment [13-15].

Wynn et al. observed the dynamics between leading metastatic cancer cells and the

resulting metastatic movement of contacting follower cells [16], which accurately

reproduced the observed biological behavior [17]. In each case, the ABM description of

the cell population showed successful replication of the biological system, and provided

interesting insights into the mechanisms involved. Wang and Deisboeck et al. implemented

an ABM to explore the roles of the ERK and EGFR pathways in non-small cell lung cancer,

and observed that an interplay between the EGFR-ERK pathway and microenvironmental

factors resulted in a phenotypic transition that favored a migratory phenotype over a

proliferative phenotype [18]. This work was later expanded to include the TGFβ pathway,

requiring a system of 26 ordinary differential equations (ODEs), and demonstrating that

ERK and ERK+TGF increased sensitivity to microenvironmental-induced invasive

phenotype transition [19]. Simulating the cell signaling EGFR-ERK and TGFβ pathway

interactions required more than just the discrete agents, (as do some other models

mentioned here); the mathematical description of the movement of these signaling

molecules between cells and throughout the computational domain is often best described

using continuum methods.
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ii. Continuum Modeling Methods

The distribution of a molecule of interest within a tissue, organ, or even at a

system-wide scale is often better suited to an equation-based description, as are large (i.e.

tissue or organ scale) distributions of cells when a cell-level resolution is unnecessary.

These models are known as continuum descriptions, and are often implemented using one

or more ordinary or partial differential equations (ODEs, PDEs). Continuum descriptions

are well suited for applications when the spatiotemporal description of a quantity of interest

is desired, but describing each individual within the quantity may not be useful or

computationally feasible. For example, oxygen or nutrient distributions (described in both

space and time) within a system (tissue, organ, etc.) are often described as continuums, as

knowledge of the exact location of each molecule is often superfluous, and the large

number of molecules within the system would introduce significant and unnecessary

computational costs (and, in fact, may not be possible at all, depending on the size and

scale of the system).

Pharmacokinetic (PK) and pharmacodynamics (PD) methods (or, when combined

into a single model, referred to as PK/PD) are commonly included as important parts of

continuum modeling, as they help link the continuum field to the underlying biology; these

relationships are crucial to the continuum modeling approach. For example, a mathematical

solution describing the continuum distribution of a molecule of interest may have limited

scientific applications in and of itself, but, when the solution is linked quantitatively to the

overlying biological system in a way that it may influence and be influenced by the system,

it becomes a more powerful modeling tool; this is the role of PK-PD. Pharmacokinetics
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refers to the ways in which the body (or system) affects the drug molecules (i.e. absorption

and distribution, metabolism, etc.); conversely, pharmacodynamics describes the ways the

drug affects the body (for example, in the case of chemotherapy, this might refer to the

effective drug induced killing of tumor cells) [20, 21]. As many of these effects are system

or tissue wide (although noting that PK and PD methods are not restricted to this scale, and

may describe small regions as well), often they may be described using temporal, but not

necessarily spatial, mathematical descriptions. Simply put, PK commonly describes the

time course of the drug concentration over time in the system, while PD describes drug

concentration vs. its effectiveness. When combined, PK-PD provides a description of the

drug effect over time [22]. The link between dosage and response is often complicated, and

there may exist various degrees of ambiguity in the understanding of the underlying

biological mechanisms that link the drug dosage with system response. To account for this

challenge, PK-PD models are usually either empirical, where they provide good correlation

between dosage and response without including the underlying biology, or mechanistic,

where the underlying biological methods that link dosage and response (as currently

understood, or as known to be most important to the system) are explicitly and

quantitatively described mathematically, providing a biological mechanism-based link

between model input and output. Whenever possible, mechanistic models are usually

preferred to empirical models, as they provide a more complete description of the

underlying biology, as well as provide useful tools to study the effects of changes in these

biological mechanisms. For the interested reader, more information on PK-PD methods

and exciting accomplishments in the field may be found in [21, 23].
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Models employing continuum methods have made great strides in elucidating

quantitative information and insights into the underlying mechanisms and causal links in

biological systems. Modelers have successfully described solid tumors as continuums [24],

both to study the growth of solid tumors and the PK of tumor response to chemotherapeutic

treatment [25, 26]. PK-PD methods have yielded insights into anticancer treatment with

antibody-drug conjugates, both in HER2-oxerexpressing BT474EEI murine xenografts

[27] and Hodgkin’s lymphoma patients [28]. In fact, the well-known Norton-Simon

hypothesis (that cancer treatment efficacy may be increased by increasing dose intensity to

reduce cancer regrowth between treatments) was generated using PK-PD methods [29, 30],

and later validated in clinical trials [30]. Other notable PK-PD modeling accomplishments

include modeling treatment of acute lymphoblastic leukemia [31, 32], drug interactions

[33], and the effects of immune-stimulatory agents [34]. Continuum methods have

demonstrated the ability to predict the outcome and treatment efficacy of a patient-specific

chemotherapy regimen based on a single time point clinical measurement, using a single

but powerful equation in closed form [35]. Notably, the model in [35] has been

demonstrated to transcend tumor type and drug treatment, demonstrating its predictive

ability in vivo using patient data (colorectal cancer metastatic to the liver and glioblastoma

multiforme [35]). Continuum modeling has even been shown to be adaptable to novel,

cutting-edge cancer therapies. Recently, PK-PD modeling was successfully implemented

to describe and predict drug update when delivered using a functionalized, targeted,

mesoporous protocell delivery mechanism [36] to deliver chemotherapy agents (cisplatin

and 5-fluorouracil, doxorubicin (DOX), and gemcitabine, respectively) to HCC, breast

cancer MCF-7, and pancreatic adenocarcinoma PANC-1 cells in vitro [37].
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iii. Hybrid Modeling Methods

The mechanistic links between model inputs and outputs often span many scales

in time and space. Drugs are often delivered intravenously, and are quickly distributed

organism-wide through the circulatory system. Drugs and other intravenously delivered

treatment vessels must leave circulation and enter the tissue where they are intended to act,

diffuse through the tissue to where they are needed, and interact with the cells of interest

at a cell or even molecular scale. This wide range of processes (in both space and time) is

poorly suited to description by only one modeling method; hence the development of

hybrid modeling methods, which combine and explicitly link modeling methods of

multiple scales into a more complete system description. Through hybridizing multiple

methods, modelers may tease out an optimal combination of the best aspects of each, while

using the strengths of one method to compensate the weakness of another [38]. For

example, hybrid models are often developed that describe tissue scale parameters (e.g.

molecular distributions) as continuums, and cell-level scales with agent-based methods,

where each cell is described individually. By explicitly linking the scales through

mathematically based feedback systems, the two scales are hybridized into a single model.

This approach provides a finer level of detail, resulting in what is often considered to be a

more complete (and, hopefully, correct) description of the system.

Hybrid methods are also implemented to overcome restrictions and limitations

encountered in the form of finite computer resources and computational power. Any

computing system is limited in terms of number of computations per time. Inherently, this

fact imposes a limitation on the resolution any model may contain, and thus a modeler must
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trade a finer resolution (in either time or space) for a smaller total modeled system. As a

general rule, the spatial size of the modeled components determines the size of the total

system modeled, as the total system is a sum of parts. If a hypothetical modeling system

implemented on a particular computer can model a total of 1,000 parts, then it may be used

to model a system of 1,000 atoms (perhaps a single molecule, and maybe even the

immediately surrounding solvent molecules), or the same model (albeit with far different

rules) may be used to describe a species population that represents each individual

organism as a unique entity, and thus could describe 1,000 total individuals. This limitation

in maximum individual “pieces” within the model has resulted in another kind of hybrid

model: one that describes different regions of the same parameter using different,

hybridized methods.

A common example of this method is solid tumors, which often consist of a fast-

growing population on the outer edge, where oxygen and nutrients are plentiful (referred

to as the viable rim), and an inner core which consists of cells which are much less active

due to nutrient and/or oxygen restrictions (hypoxia), and may even be dead (necrotic) due

to prolonged exposure to resource-limited conditions. Further, depending on the size of the

solid tumor, the total cell population in the viable rim may be small relative to the

population in the other regions. If the modeler wishes to gain insights into the cell-scale

invasive behaviors in the viable rim, his or her model might be greatly hindered by

calculating a complete description of each dead cell in the necrotic core for every time

point. Modelers may work around this limitation by describing the total cell population

with a hybrid approach: describing the viable rim as unique cells, through an agent-based

model approach, while describing the dense center region of the tumor as a continuum.
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These descriptions are hybridized with a set of rules governing when a particular cell

(agent) transitions to become part of the continuum (or vice-versa) [39]. This approach has

been used in other clever ways, such as a discrete description of vasculature invasion

(angiogenesis) through tissue (represented as a continuum) in a collaborative effort by

Frieboes, Lowengrub, and Cristini et al. [40-42].

The complex interplay of factors involved in cancer initiation, development, and

treatment often span many scales in space and time, and are thus well-suited to hybrid

modeling methods. Cancer cells profoundly affect their microenvironment, including

through acidosis from glycolytic metabolism [43] and extracellular matrix (ECM)

remodeling (often through acidosis-induced ECM degradation), both of which may impact

phenotypic selection within, and metastasis out of, the tumor [44]. Gattenby et al. have

extensively explored the complex interplay of glycolysis and acidosis within the tumor

environment using hybrid ABM techniques [45, 46], demonstrating the effects of acidosis-

induced phenotypic selection to a phenotype that further decreased microenvironment pH,

further favoring the acid-resistant phenotype and perpetuating an invasive phenotype.

Gerlee and Anderson saw a similar effect in a different model that also included the effects

of ECM [13], where they observed the ECM resisted metastasis out of the acidic

environment, again perpetually favoring the phenotypic selection to an acid resistant

phenotype. In yet another model, Anderson further demonstrated the importance of cell-

ECM interactions in cancer cell invasiveness and metastasis [47]. Other modeling work

has further elucidated the complex interplay of tumor microenvironment and phenotypic

selection, both through random selection [48] and neural network governed

microenvironment-directed evolutionary dynamics [13-15]. Notable hybrid modeling in
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cancer applications includes the study of tumor angiogenesis [49-51], molecular signaling

in the tumor environment [52-55], cancer stem cells [56-59], and cancer treatment [54]

through ionizing radiation [60] and post-surgical adjuvant radiation therapy [61],

chemotherapy [62], and even the immune response to tumors as induced through anticancer

vaccines [63, 64].
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CHAPTER 2

Overview of Models Presented

In this work, we will explore the development and implementation of three

different but related hybrid models of the human mammary gland system. Through creation

of a hybrid continuum/agent-based model, a model system was generated that describes

the human mammary gland, both at an individual cell scale, and also at molecular and

tissue scales through a continuum description of molecular movement, consumption, and

production within the tissue. This model system incorporates appropriate, biologically

supported cell phenotypic hierarchies and types, and signaling pathways, in order to

provide cell-by-cell insights into the subtle cell population dynamics involved in organ

development and maintenance. Following validation, the model was further adapted to

describe both the developing gland (which occurs during female puberty), and also a post-

menopausal representation of the mature gland, which experiences an induced transition to

a precancerous DCIS phenotype, disrupting gland homeostasis and resulting in simulated

initiation and development of early stage breast cancer. In the following chapters, we will

explore the development of these models, some results and insights from model

simulations, and plans for the next future step: further model development. These models

were inspired, in part, by previous modeling work in the mammary gland and DCIS; these

are reviewed in detail in the appropriate sections in the following chapters.
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I. Modeling the Mammary Terminal End Bud

Our modeling efforts on the pubertal terminal end bud (TEB) to date have been

split into two distinct but related models: a two-dimensional, lattice-based model, and a

three-dimensional lattice-free model. Each method presents its own set of advantages and

challenges, which are briefly discussed here. Biologically, the TEB is a three-dimensional

structure, which possesses a rough axial symmetry. To this end, we initially assumed an

axial symmetry of the structure, and thus implemented a “slice” of the TEB in two-

dimensions as a reasonable approximation of the biological structure. A two-dimensional

approximation, although a simplification of the structure as it occurs in nature, offers some

distinct advantages over a model that provides a complete three-dimensional

representation.

Each time an additional level of complexity is added to a model, the modeler gains

a more complete description of the biological system, and possibly a model that may more

completely and accurately replicate or even predict the biological system behavior. This

new information is not free, however, and needs additional computational power,

commonly resulting in increased simulation run times or even requiring the acquisition or

implementation of new computational resources. Additional complexity is introduced into

a model through the inclusion of new variables, equations, or other factors- all of which

may introduce additional sources of error (for more information, see Chapter 1, section I).

Placing the ABM portion of the model into a lattice-based structure further reduces

computational costs, as the complexities of solving the physics of cell-cell interaction are

reduced to a greatly simplified description of cell movement. In these early stages of model

development, computational efficiency is especially important, as faster model run times
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allow for extensive testing in a shorter time, so the model may be tested, calibrated, and

validated in a reasonable time frame. By starting with a simple model, in silico researchers

are able to focus on only the biologically factors thought to play the greatest role in the

system, and to confirm their importance by a model that only examines their effects. In this

way, the model is limited to a few (but important) parameters, which may later be expanded

upon, if the model is validated successfully in the simplified state.

Each new variable added into a model runs the risk of being a confounding

variable (introducing accidental bias to the system) or introducing unanticipated variable

interaction effects, and may lead to incorrect assessment of the importance each parameter

plays in the overall system. The number of parameters included in a model, and the

corresponding number of equations, must also be constrained by available information.

One cannot include too many unknown parameters, or parameters that may only be

quantified through model fitting. This situation can result in overfitting, where too many

unknowns have been fit to a particular set of data, often imparting unwarranted weight to

some variables and hindering, if not completely eliminating, any predictive power of the

model. For these reasons (among others), models are often first validated at a simpler

implementation before being expanded into more complex and detailed versions.

i. Two-dimensional TEB Model

By first studying the TEB in a two-dimensional, lattice-based hybrid model, we

were able to address and account for many of these factors while simultaneously

developing a platform that would later be expanded out into a more complex, three-

dimensional description. Many of the biological descriptions, computational methods,
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model validation rubrics, and parameter calibrations used in and tested with the two-

dimensional model were directly or easily translatable to the three-dimensional model as

well. More importantly, however, the two-dimensional model was able to successfully

replicate literature-supported parameters, including cell-cell phenotypic hierarchy

behaviors, replication cycle statistics, mammary gland development rates, and the

phenotypic distribution as observed in the biological mature gland. By finding a set of

model parameter ranges that resulted in model outputs with good correlation to these values

as reported in the literature, we were able to successfully calibrate the model parameters,

simultaneously providing insights into quantified ranges of the behaviors in nature and

establishing parameter baseline values for future modeling efforts.

Chapters 3 and 4 detail the development of this two-dimensional model of the

pubertal terminal end bud (TEB). Chapter 3 presents initial model development, as

presented at the 36th Annual International Conference of the IEEE Engineering in Medicine

and Biology Society (EMBC, 2015), and reproduced with permission from [1]. This initial

effort was improved upon, through inclusion of more literature supported data, including

biologically-measured TEB geometry data, calibrated cell cycle statistics (including

refined symmetric proliferation probability data, and model calibrated and literature

supported maximum number of mitosis cycles), as well as endocrine and paracrine

signaling methods and associated discrete-continuum scale feedback. When properly

calibrated, this improved version of the model showed good agreement with literature

supported values, and provided interesting insights about the time-dependent dynamics of

phenotypic distribution within the TEB. Of note, the model results showed the importance

of phenotype hierarchies and endocrine and paracrine signaling in the resulting phenotype
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distribution within the mature mammary gland, an important factor in gland homeostasis

maintenance subsequent to development. It was also demonstrated that, under biologically

relevant conditions, the gland has the potential to develop at even faster rates than those

observed in vivo, indicating that endocrine and paracrine signaling mechanisms play

important roles in not only initiation and perpetuation of gland development, but also

important regulatory roles in controlling gland development rates. The details of these

important steps are elaborated in Chapter 4, alongside detailed model results, our

observations, and the important information we gleaned from this effort (i.e. that which

was deemed pertinent to future modeling efforts of the TEB), as published in The Journal

of Theoretical Biology, reproduced with permission from [2].

ii. Three-dimensional TEB Model

Building on the successful implementation of the two-dimensional TEB model,

we moved forward into a more biologically complete three-dimensional model of the TEB;

the results of which to-date are presented in Chapter 5 (as presented at EMBC, 2016),

reproduced with permission from [3]. Notable improvements over the previous model

include removal of the lattice-based agent movement restriction (allowing for explicit

modeling of cell-cell physical interaction, repulsion and inelastic cell deformation

(modeled implicitly through a coefficient of restitution between cells), cytoplasmic

expansion induced growth during interphase, and cell-cell and cell-basement membrane

(BM) adhesion), and implementation of a more complex (and more biologically correct)

epithelial to stromal paracrine signaling pathway (more detail on this topic is provided in

Chapter 6, Introduction, and Chapter 7, Introduction). Implementing a three-dimensional
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representation of the TEB allowed for the removal of the axial symmetry approximation

which was inherently necessary in the two-dimensional approximation, resulting in more

accurate correlation between model output and biologically reported values.

A three-dimensional representation also improves the biological representation of

calculated molecular descriptions within the gland, as the two-dimensional representation

fails to impart correct weights to ABM imparted molecular modifications onto the

continuum scale. For example, in a three dimensional representation of a mammary duct

(a roughly cylindrical structure, composed of two concentric cell layers), the outermost cell

“layer” will contain more cells than a “layer” closer to the duct axis (assuming all cells are

of roughly equal cytoplasmic volume and radius), and the larger number of cells in the

outermost layer would be expected to have a greater effect on molecular profiles, e.g. more

cells may consume more oxygen. However, in two dimensions, our symmetry assumption

results in the same number of cells at both radii (in this case, perhaps in a “slice” of a duct).

This restriction artificially imparts an equal contribution to oxygen concentration reduction

for cells in both regions – contrary to the actual biological structure, where the outer layer

in this example would be expected to consume more total oxygen. A three-dimensional

representation also correctly describes the surface-to-volume ratio of the structure, a

parameter that has an effect on molecular parameters, including molecular influx, efflux,

and distribution through the structure. Lastly, the removal of the lattice-based restriction

on agents allows for inclusion of additional important parameters, including the effects of

cytoplasmic volume changes through the cell cycle, and the effect of cell-cell interactions.
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II. Modeling Ductal Carcinoma in Situ

Chapter 6 details the development of a three-dimensional, lattice free model of

the mature mammary gland for the study of initiation of post-menopausal DCIS, and

presents some initial results from the model validation process, reproduced with permission

from [4]. This model was accomplished using a simulated length of mature, post-

menopausal mammary duct, which we assumed to be cylindrical for ease of

implementation and to remove any unintended effects of a variable duct cross section on

reported model outputs. In the model, cancer is initiated at time t=0 through spontaneous

epithelial to mesenchymal (EMT) transition to a DCIS phenotype in one or more luminal

cells, resulting in a cancer stem cell (CSC) phenotype and subsequent DCIS invasion into

the luminal cavity. This model is built upon the previous model of the developing

mammary gland, and includes many of the same aspects, including the literature-based

phenotype hierarchy, and signaling pathways – although both are perturbed from the

healthy state, in order to accurately represent a cancer phenotype.

Modeling a cancer state required the model to be altered from the conditions

included in the previously mentioned healthy development models. Molecular pathways

were “broken” from the healthy state, allowing cells to experience more intense molecular

signaling or to undergo a mutation which made them more sensitive to the signaling,

resulting in unregulated proliferation. Cancer cells also consume oxygen at higher rates,

based on literature reported values [5]. Phenotypically, non-stem progenitive cells may

now undergo many more mitosis cycles than in the healthy gland, based on values reported

in [6, 7].
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Subsequent to the model validation presented in Chapter 6, we sought to improve

the model to better represent the cancer environment. We imposed a cell density

proliferation limitation for progenitor cells, where proliferative cells become proliferation-

restricted should their local cell density rise above a defined threshold, resulting in a

transition into a reversible quiescent state (the quiescent state is reversed should local cell

density drop below this threshold at a later time). Due to the higher oxygen consumption

rates within the DCIS population (and a lack of vasculature in this region), hypoxic

conditions may occur within the DCIS tumor. Under these conditions, cells will become

hypoxic and then necrotic after a period of time, unless they are displaced into a region of

higher oxygen concentration, or the local oxygen concentration rises back above the

threshold. Transition to necrosis is taken to be irreversible, and cells that become necrotic

will die and undergo a cell lysis process, where the cell swells until membrane rupture,

leaking its cytoplasmic contents out into the duct cavity space. These regions are then

calcified, resulting in hydroxyapatite accumulation in regions of extended hypoxia. The

details of this process, quantified parameter values, and simulation results are detailed and

discussed in Chapter 7.

III. Future Directions Overview

Finally, we will discuss the presented results and explore the next steps, where we

present our plans for future model development and studies in Chapter 8. Both three-

dimensional models will be further improved in order to gain a more complete

understanding into quantified behaviors of the underlying biology. We will briefly examine

the reasons for, and possible implementation methods of, these ideas. This discussion will
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serve as a guide to direct interested readers towards upcoming publications of the results

of these efforts, and hopefully also inspire others to implement new and interesting aspects

into their models as well.
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I. Abstract

Terminal end buds (TEBs) are bulb-like structures at the growing tips of

elongating mammary ducts, and the growth of a TEB is a complex, organized

biological process. In this paper, we present a hybrid continuum-discrete agent-based

model to provide quantitative insight into the properties of cell symmetric and

asymmetric division on the spatial and developing cell rearrangement within the TEB

during ductal elongation. An interplay of endocrine-paracrine signaling and cell

lineage has been implemented in the model. Our results show that higher symmetric

division rates resulted in more progenitor cells remaining in the TEB, while lower

rates resulted in more differentiated cells in the TEB. Moreover, pure proliferation

alone was enough to result in ductal elongation in the absence of any cellular

migration, a result consistent with current experimental data. This model can also

serve as a platform to study how mutation-induced phenotypic changes contribute to

developmental defects in mammary gland development.

II. Introduction

Pubertal development of the mammary gland is characterized by epithelial

invasion of the mammary ductal tree away from the nipple and into the stromal fat pad.

The mammary gland is primarily composed of basal and luminal cells, with myoepithelial

cells and a few intermittent stem cells in the basal region surrounding an inner layer of

luminal cells [1]. Individual branches are advanced by a terminal end bud (TEB) structure,
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a bulbous region characterized by high cellular proliferation rates and thought to be capped

with oligopotent stem cells [2].

The mammary gland development process is initiated and regulated in part by

endocrine and paracrine signaling [3]. A well-studied endocrine-paracrine signaling

cascade is shown in Figure 3.1. Briefly, estrogen induces upregulation of amphiregulin

(AREG) production in luminal estrogen receptor alpha positive (ER+) cells [4], which

induces progesterone-mediated proliferation [5] in estrogen receptor negative (ER-),

epidermal growth factor receptor (EGFR) positive basal and luminal cells. This signaling

cascade is directly involved in ductal elongation due to cellular proliferation, both in

growth of primary ducts and ductal branches [6]. TEB growth and cellular proliferation is

induced by estrogen signaling, with AREG playing a mediation role, and both estrogen and

AREG are necessary for mammary gland development [3]. It has also been reported that a

single stem cell can give rise to both luminal and myoepithelial lineages, resulting in a

Figure 3.1: Cellular lineages and estrogen and AREG signaling pathways. Estrogen
upregulates AREG production in ER+ cells, which induces proliferation in ER-/EGFR+
myoepithelial and luminal cells.
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complete mammary gland structure [7]. Mammary stem cells are capable of self-renewal

for many cell cycles, as well as asymmetric division into epithelial progenitor cells, both

of which are shown to be rapidly proliferative. Progenitor cells are more numerous in the

mammy gland than stem cells, and both are found in regions of the mammary gland distinct

from the TEB [7], with stem cell niches found in the duct regions and proliferative cells in

mammary gland lobules.

Mathematical modeling has been used to quantitatively represent and simulate

normal mammary gland development [8, 9] and ductal carcinoma in situ (DCIS) [10-12].

However, models developed to date do not account for the dominant TEB contribution in

the mammary developmental process during puberty. Here, we develop a hybrid

continuum-discrete ABM to provide quantitative insight into how the interplay of

endocrine-paracrine signaling and cell lineage within the TEB affects mammary gland

growth during pubertal development. While a complete description of the known pubertal

TEB signaling cascade is beyond the scope of this work, we select an important piece of

the endocrine-paracrine signaling as shown in Figure 3.1, where ER+ luminal cells are

stimulated by estrogen and produce AREG, resulting in downstream stimulation of ER-

cells in the basal and luminal layers of the TEB. This model can serve as a platform to

study the mechanisms through which mutation-induced phenotypic changes contribute to

developmental defects in the TEB and mammary gland development.
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III. Methods

i. Computational Domain

Time-dependent molecular profiles are solved on a two dimensional (2D)

computational domain. The 2D domain consists of the TEB region, an immature duct

section, and a small section of mature duct trailing the TEB. We further divide the

computational domain into luminal and myoepithelial regions, with proliferative regions

close to the TEB tip (regions 1 & 5), differentiation zones (regions 2 & 6), and immature

and mature regions of the mammary gland (regions 3 & 7 and 4 & 8, respectively) as shown

Figure 3.2: Computational domain. (A) Microscopic view of a TEB structure (provided
by M Lewis, Baylor College of Medicine). (B) Schematic of the TEB structure. Labeled
regions correspond to 0: apoptotic zone, 1: myoepithelial proliferative cap zone, 2:
myoepithelial cap differentiation zone, 3: myoepithelial immature duct, 4: myoepithelial
mature duct, 5: luminal proliferative zone, 6: luminal differentiation zone, 7: luminal
immature zone, and 8: luminal mature duct.
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in Figure 3.2. The internal ductal cavity represents the apoptotic zone (i.e., region 0).

Within the proliferative zones, agents only divide symmetrically into progenitive daughter

cells, but may differentiate after several divisions. Within the differentiation zone, agents

may divide symmetrically or asymmetrically, giving rise to differentiated daughter cells.

Agents may move out of the computational domain from regions 4 & 8, at which point

they are considered part of the fully mature duct and removed from the simulation.

ii. Continuum Component

Continuum profiles of molecular gradients are described using a general reaction-

diffusion equation:

2 ( )u D u R u
t

  


, (1)

where u is the molecular concentration (of estrogen, AREG, and oxygen, respectively), D

the corresponding diffusion constant, and R(u) a reaction term (here specifically referring

to molecular degradation), taken to be a constant in this case. This equation is solved

numerically using finite element methods (FEM) for each time step.  Time-dependent

solutions are then obtained on a tetragonal mesh in C++ using Sundance [13], a FEM solver

package included in the Trilinos Project, a numerical toolset developed by Sandia National

Laboratory. Exact FEM solution values are passed to the agents, who use them to make

behavioral decisions (see next Section). Agent modifications to the FEM solutions are

imposed by imposition of Dirac delta functions onto the nearest node to the appropriate

agent as determined through Voronoi tessellation. Molecular profiles for molecules that

enter the mammary ductwork from surrounding tissues (O2 and estrogen) are imposed as
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normalized Dirichlet boundary conditions, while molecules that are produced inside the

mammary ductwork are allowed to diffuse freely without boundary conditions.

iii. Discrete Component

Each cell in the TEB and mature mammary duct (Figure 3.2) is represented as a

discrete entity (agent), complete with its own unique location, phenotype, and cell lineage

(also see Figure 3.1). On a hexagonally close packed grid, agents can move, undergo

symmetric or asymmetric mitosis, differentiate, and enter necrosis and subsequent lysis as

a result from hypoxic conditions. Cells make their phenotypic decision changes according

to a specific algorithm. Briefly, for an agent at each time step, if the oxygen threshold is

below the necrosis threshold, the agent attempts to undergo chemotaxis towards higher

oxygen concentration; if there is not a space to move, it undergoes necrosis and lysis. ER+

agents also query the estrogen concentration, and ER-/EGFR+ agents probe the AREG

concentration at their location. Throughout each cell cycle, we check every 30 minutes to

determine which agents may proliferate (i.e. it has been at least one full cell cycle since

their last proliferation), and agents that are eligible to proliferate may do so. Agents also

modify the continuum solutions, either by consuming molecules and lowering the

concentration at their location or by producing molecules and increasing their

concentration at their location. Agents which have the appropriate proliferation signaling

molecule above the minimum threshold (i.e., estrogen for ER+ and AREG for ER- cells)

may proliferate if there is room, or they may differentiate as shown in Figure 1. A

maximum number of proliferation cycles is imposed on all cell types except for stem cells,

which may proliferate indefinitely, again provided they have room to do so. When cells
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have undergone the maximum number of proliferation cycles they automatically

differentiate.

iv. Model Parameters

Most parameters, including initial concentrations and diffusion rates of signaling

molecules, are obtained from the

literature or estimated when

unavailable. For example, while the

diffusion constant for oxygen in

tissue is well established in the

literature, diffusion constants for

estrogen and AREG are not as well

characterized, and thus are estimated

based on relative molecular weights.

The molecular weight of estrogen is

approximately 17 times larger than

O2, while the four isoforms of AREG

vary from over 560 to almost 2,700

times larger molecular weight [16],

so it is established that diffusivity

constants are Doxygen > Destrogen >

DAREG.

Parameter Value Reference

Necrosis
threshold

0.2 [11]

Doxygen 2.5 × 10-6

cm2s-1
[14]

Destrogen < Doxygen

DAREG < Destrogen

Cell cycle time 16 hours [11]

Cell death (+
lysis) time

< 16 hours [15]

Proliferation rate <= 1 per 16
hours

Maximum cycles
before
differentiation

2-3

Asymmetric
division
probability

Varies

Stem cell
differentiation
probability

0.10

Probability of
spontaneous
differentiation

0.001

TABLE 3.1 KEY MODEL PARAMETERS.
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We take cell cycle time to be 16 hours based on observed cell cycle time in the

TEB. Investigations on the mechanisms of cellular death resultant from hypoxia have

indicated that it is a combination of both necrosis and apoptosis, which is dependent on

cell type [15]. We lump both mechanisms together, and consider apoptosis times that have

been established on the order of hours, with onset of pyknosis within 12 hours and

commencement of cellular lysis within 24 hours. Normalized threshold for cellular death

due to hypoxia is taken to be 0.2 as in [11]. A list of key model parameters can be found in

Table 3.1.

IV. Results and Discussion

We examined the impact of (1) symmetric (and asymmetric) division rates and

(2) maximum cell cycles before differentiation (see Table 3.1) on mammary gland growth

rates. We varied symmetric (and asymmetric) division probability through a range of [0.2,

0.3, ..., 0.9]; note that the sum of both division probabilities should always be 1.0. Since

progenitor cells (that are not stem) may only divide a limited number of times before they

differentiate, we only focused on two cases: 2 and 3 maximum cell cycles before

differentiation.

i. Symmetric vs. Asymmetric Division

Figure 3.3 shows the simulation results. Higher symmetric division probability

results in more progenitor cells remaining in the TEB, while lower rates result in more

differentiated cells in the TEB. In Figure 3.3B and 3.3C, agents divide symmetrically in
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the proliferative zone (regions 1 and 5), asymmetrically or symmetrically in the

differentiation zone (regions 2 and 6), have a higher chance of asymmetric division to give

rise to differentiated daughter cells in the immature duct (regions 3 and 7), and any

progenitors remaining in the mature duct may only give rise to differentiated daughters.

When symmetric division rates are high, fewer differentiated cells are seen in the

computational domain, even in the mature duct region. Conversely, when symmetric rates

are low, the TEB differentiation region becomes predominantly filled with differentiated

cells, reducing growth rates. This effect is mitigated by the population of mostly progenitor

cells in the proliferative zone, however, as this region contains the majority of proliferating

Figure 3.3: Parameter analysis. (A) Initial seeding of agents within the TEB domain.
(B) Simulation results showing 2 cycles before differentiation at various symmetric
division probabilities. Low symmetric division probabilities are seen to result in large
numbers of differentiated cell in both the proliferation and differentiation zones. Even
at 90% symmetrical division, large numbers of differentiated cells are seen in the
proliferation region, indicating a need for more cell cycles before differentiation. (C)
Three cell cycles before differentiation. Differentiated cells are again observed in all
regions, but at higher symmetric division probability progenitor cells still occupy most
of the region, resulting in higher growth rates. (D) Growth rates observed from the cases
shown in (B) and (C). Higher symmetric division rates and more cell cycles before
differentiation both increase ductal elongation growth rate. See Figure 3.1 for color
scheme.
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cells. Additionally, cells in the differentiating region are rapidly moving towards the

mature duct and away from the proliferative region. Whether a daughter is differentiated

or a progenitor cell, it may or may not remain in this region for a full cell cycle. In the case

of exiting the proliferative or differentiation region before the next cell cycle, daughter type

has no influence on ductal elongation rate. The differentiation zone experiences an influx

of agents from the proliferative zone, which may have proliferated before entering the

differentiation zone. These agents may become differentiated due to reaching the

maximum cycles before differentiation limit, contributing to the population of

differentiated cells in the TEB.

ii. Differentiation

A more complete description of the relationship between growth rates and

differentiation rates is shown in Figure 3.3D. Differentiation and asymmetric division are

interrelated, and that higher rates of asymmetric division or lower number of cell cycles

before differentiation have similar consequences: higher percentages of differentiated cells

in the TEB. Cell cycles before differentiation has a large impact on growth rates. For

example, with 80% symmetric differentiation, 1 cell cycle before differentiation results in

large numbers of differentiated cells in the proliferation region of the TEB and arrested

growth rates, while initial testing indicates 3 cell cycles is optimal for biologically accurate

simulation results.

From our parameter analysis, we observe that pure proliferation was enough to

result in ductal elongation in the absence of any cellular migration. In the future, we will

break the signaling and behavioral rules governing normal ductal morphogenesis and
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maintenance either individually or in defined combinations to predict what happens to the

relative proportion of cell types in the gland in abnormal growth and development

situations.
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I. Abstract

Mammary gland ductal elongation is spearheaded by terminal end buds

(TEBs), where populations of highly proliferative cells are maintained throughout

post-pubertal organogenesis in virgin mice until the mammary fat pad is filled by a

mature ductal tree. We have developed a hybrid multiscale agent-based model to

study how cellular differentiation pathways, cellular proliferation capacity, and

endocrine and paracrine signaling play a role during development of the mammary

gland. A simplified cellular phenotypic hierarchy that includes stem, progenitor, and

fully differentiated cells within the TEB was implemented. Model analysis finds that

mammary gland development was highly sensitive to proliferation events within the

TEB, with progenitors likely undergoing 2-3 proliferation cycles before transitioning

to a non-proliferative phenotype, and this result is in agreement with our previous

experimental work. Endocrine and paracrine signaling were found to provide

reliable ductal elongation rate regulation, while variations in the probability a new

daughter cell will be of a proliferative phenotype were seen to have minimal effects

on ductal elongation rates. Moreover, the distribution of cellular phenotypes within

the TEB was highly heterogeneous, demonstrating significant allowable plasticity in

possible phenotypic distributions while maintaining biologically relevant growth

behavior. Finally, simulation results indicate ductal elongation rates due to cellular

proliferation within the TEB may have a greater sensitivity to upstream endocrine

signaling than endothelial to stromal paracrine signaling within the TEB. This model

provides a useful tool to gain quantitative insights into cellular population dynamics
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and the effects of endocrine and paracrine signaling within the pubertal terminal end

bud.

II. Introduction

Development of the mammary gland begins in the embryo but occurs primarily

postnatally, subsequent to pubertal expansion of the fat pad. The rudimentary mammary

ductal tree present at birth remains relatively dormant until puberty, when estrogen receptor

positive (ER+) progenitor cells respond to estrogen signaling upregulation, in part, by

proliferating and increasing local membrane-bound amphiregulin (AREG) cleavage into

the extracellular space; AREG serves as a paracrine signal that promotes proliferation of

estrogen receptor negative (ER-)/epidermal growth factor receptor positive (EGFR+)

neighbors [2]. During pubertal gland development, each actively growing branch is

terminated with and advanced by a terminal end bud (TEB), a bulbous structure composed

primarily of progenitor cells. A TEB is capped with a layer rich in stem and regenerative

cells, although it has been demonstrated that stem cells are not exclusively at the tip of the

TEB [3].

Stem cells within the TEB are fundamental in mammary gland development

through maintenance of the progenitor population.  Work by Shackleton et al.

demonstrated that a fully functional mammary gland could be developed from a single Lin -

CD29hiCD24+ highly proliferative mammary stem cell (MaSc) [4], which was isolated

from a stem cell population later determined to be ER- [5]. More recent studies into the

stem cell population within the TEB have indicated that the stem cell niche in the TEB is

composed of cells with different proliferation potentials, where stem cells can be either
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multipotent (able to give rise to daughters of all phenotypes found within the TEB) or

unipotent (able to give rise to only one daughter phenotype [3, 6]. MaScs are able to divide

symmetrically, resulting in two phenotypically similar daughters, or to divide

asymmetrically giving rise to one stem and one progenitor daughter, both of which can

proliferate symmetrically or differentiate towards a more lineage-restricted phenotype [2,

7], together giving rise to luminal and myoepithelial lineages.  This provides a mechanism

for maintenance of stem and progenitor cell populations within a population of rapidly

developing mature, differentiated cells during organogenesis. Furthermore, the dynamics

of symmetric vs. asymmetric divisions within the progenitor population (where a mitosis

event results in both mother and daughter having the same phenotype (either proliferative

or differentiated; symmetric division) or the mother retains a proliferative phenotype while

giving rise to a terminally differentiated daughter (asymmetric division)) plays a critical

role in proper organogenesis, and is likely involved in mammary ductal elongation rates

during this process.  Efforts to quantify the rates of symmetric vs. asymmetric proliferation

of stem cells indicate that they proliferate primarily asymmetrically.  Investigations of stem

cell symmetric division probability have shown 16% symmetric division in mammalian

epithelial cells in vivo [8], 25% symmetric division in CD34+CD39lo human severe

combined immunodeficiency mouse-repopulating cells in vivo [9], and 13% symmetric

division in primitive human hematopoietic stem cells in vitro [10], which are in agreement

with mathematical modeling studies as well [8, 11].  Daughter phenotypes resulting from

progenitor proliferation are more uncertain where symmetric proliferation has been

reported from 10-70% [12-18]. Specific to the mammary gland, cell cycle time in MCF-
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10A immortalized human mammary epithelial cells in the presence of epidermal growth

factor has been reported as approximately 15.5 hours [19].

It is well-established that AREG production increases in response to binding of ER

alpha in the TEB epithelium [20], that ER- mice fail to initiate pubertal mammary gland

development in response to hormonal signaling at the onset of puberty [21], and that loss

of AREG results in gross stunting in pubertal mammary gland development [20, 22].

AREG is involved in epithelial to stromal paracrine signaling through its interaction with

EGFR [23], is connected to cellular differentiation and carcinogenesis in the mammary

gland [7], and has been demonstrated to play a required role in development of TEBs,

epithelial growth, and ductal elongation in the pubertal murine mammary gland [24].

Figure 4.1: Cellular phenotypic hierarchy and signaling pathways.  Stem cells may be
unipotent or multipotent, and may self-renew or contribute to the myoepithelial or
luminal progenitor populations when undergoing proliferation events.  Progenitor
populations are maintained primarily through symmetric progenitor proliferations.
Progenitors may also give rise to differentiated daughters, and may differentiate upon
reaching the proliferation cycle threshold.  ER+ cells are stimulated to proliferate and
produce AREG by upregulation of estrogen endocrine signaling, while AREG
stimulates downstream proliferation of ER-/EGFR+ cells.
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We note that pubertal mammary gland development, and the resulting glandular

architecture, is induced and regulated by a complex network of endocrine, paracrine, and

autocrine signaling pathways [25].  The complexity of these signaling networks is beyond

the scope of this work, and in fact remains partially uncharacterized, both in terms of all

molecular players involved and in terms of quantification of molecular signaling thresholds

necessary for upregulation of cellular proliferation.  Accordingly, we have chosen to focus

on only a small portion of the signaling network, namely endocrine system estrogen

signaling and subsequent epithelial to stromal AREG signaling, as shown in Figure 4.1.

For an excellent review of the more complete known signaling regulation pathways in

development of the mammary gland, the reader is referred to [25].

While signaling events are responsible for induction and maintenance of gland

development (as described above), gland growth is also a direct result of stem and

progenitor population’s proliferation within the TEBs. In addition, progenitor population

size, distribution, and proliferation capacity play key roles in glandular development,

phenotypic distribution within the mature duct, and ductal elongation rates. Hence, in this

work, we examine how cellular phenotypic distribution and behavior within the TEB, as

well as pubertal estrogen upregulation to stimulate ER+ cellular proliferation, in

collaboration with downstream AREG paracrine signaling to ER- cells, affect cellular

proliferation, as well as how these signaling pathways play a role in overall cellular

proliferation within the TEB during active pubertal mammary ductwork development.

Mathematical modeling and computer simulation have emerged as promising tools

to help understand cellular phenotypic transitions and molecular signaling kinetics at

different stages of tissue development. In study of the mammary gland, mathematical
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modeling has made impressive strides, often with a focus on ductal carcinoma in situ

(DCIS), the most common non-invasive cancer of the breast. In some mathematical studies

of DCIS, the tumor is modeled as a continuum, allowing for calculation of estimated tumor

size based on diffusion and mitotic/apoptotic indices [26] and examination of DCIS growth

tendencies [27]. In other models, each cell is represented as a unique entity, an approach

known as agent-based modeling (ABM) [28-30], which allows for information such as

individual phenotype, cellular state, and cell-cell interactions to be included in the model.

ABM has provided valuable insight into the apoptosis mechanisms that are known to play

an instrumental role in mammary gland lumen formation [10, 31], and how the

morphologies of DCIS can be influenced by cellular proliferation and apoptosis [32].

Other modeling approaches include aspects from both continuum and ABM methods to

form hybrid models [33, 34]. Hybrid methods allow interaction and feedback between the

different scales, with cells responding to the surrounding environment and modifying it.

For example, the tumor environment is known to be hypoxic, low in pH, and have high

glycolytic rates associated with high cellular proliferation (for more information the reader

is referred to [35]), where limited concentration of available molecular resources can result

in cell-cell competition and selection of more aggressive phenotypes. These phenomena

are often incorporated into hybrid models, with feedback between the agents and the

continuum solutions that account for both time-dependent movement of relevant molecules

and their cellular uptake or production. In fact, hybrid models of DCIS have been used to

provide insight into contact inhibition in the formation of the four morphologies of DCIS

[36], and examine how acidosis and hypoxia influence phenotypic selection [37].



www.manaraa.com

55

Furthermore, recent advances in modeling capabilities have resulted in highly complex,

patient calibrated models of DCIS [38, 39].

While modeling has helped elucidate mechanisms involved in several mammary

gland related processes, much has focused on formation of and transition to DCIS in a fully

formed duct, instead of the behavior of the normal TEB and mammary gland ductal

development. Recently, an experimentally-validated population-based continuum model

to study mammary ductal elongation during pubertal development has been presented [1].

While this baseline model presents the first work on modeling ductal elongation using

actual experimental data, it lacks a description of spatial heterogeneity, specific cell type

localizations, cell-cell interactions and signaling. Here, we have implemented a hybrid

ABM to study how endocrine and paracrine signaling within the normal TEB environment

is involved in cellular proliferation and differentiation during pubertal development of the

mammary gland, and how apoptosis events are involved in the formation of the lumen and

influence ductal elongation rates. By gaining a more complete picture of how the healthy

TEB functions, we are able to quantitatively examine how cellular phenotypic distribution,

population size, proliferation and differentiation potentials, and the influence of endocrine

and paracrine signaling systems and their effects on observed ductal elongation rates. Here,

we describe methods for developing the model and provide biological insights we have

observed. In the future, we plan to use this model to study how perturbations in endocrine

and paracrine signaling and cellular phenotype proliferation and differentiation

probabilities may contribute to developmental abnormalities observed in the pubertal

mammary gland.



www.manaraa.com

56

III. Hybrid Modeling Methods

We have developed a framework for multiscale hybrid modeling in C++ through

implementation of a hybrid of partial differential equations (PDEs) and ABM. PDEs are

solved with the finite element method (FEM), and used to model biologically relevant

molecular distributions, including diffusion of important molecules from the surrounding

tissue (oxygen and estrogen) and diffusion of growth factor (i.e., AREG) produced in the

TEB by cells.  Agents represent cells discretely, and have the capability to model many

aspects of cellular function, including proliferation, migration, differentiation, apoptosis,

and cell-cell signaling.  Agents also modify the environment around them; for example,

agents probe the oxygen concentration at their physical location from the FEM solution,

and either undergo hypoxia induced necrosis (if oxygen concentration is insufficient to

maintain cellular function; however, in our mammary gland model, necrosis does not occur

(or is very rare) because all possible locations a cell may occupy within the TEB are well

within the Krogh length from the oxygen supply at the TEB outer boundary) or consume

some of the available oxygen as necessary to maintain homeostasis, modifying the FEM

Figure 4.2: TEB and schematic of computational domain.  (a) Microscopic view of the
TEB (courtesy of Dr. Helen Hathaway, University of New Mexico).  (b) Schematic of
regions within the TEB. Regions 1-4 compose the myoepithelium, 5-8 compose the
lumen, and 0 is the lumen-formation region.  Definition of the regions was adapted
from [1].
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solution at their location accordingly. Figure 4.2 describes the computational domain,

with TEB geometry based on measurements from murine models [1].

i. Continuum partial differential equation component

Small molecule movement within the computational domain is described according

to the reaction-diffusion equation form:

, (1)

Where u is a substrate concentration normalized by its maximum/saturation level, D is the

diffusion coefficient of the molecule of interest and R(u) = U(u)  L(u) is a reaction term

to account for molecular production/consumption U(u) and degradation L(u).  The

diffusion coefficient of oxygen in tissue has been reported over a wide range, from 10-4 to

10-8 cm2/s [40]. In light of this large reported range, we take the somewhat central value

of 2.57*10-6 cm2/s from [41] in our specific model.  Diffusion coefficients of estrogen and

AREG are estimated (as corresponding data are not available in the literature) from

reported diffusion coefficients of similar molecules (See Table 4.1).  Briefly, AREG

diffusion coefficient was estimated relative to published values for similar molecules (i.e.

EGFR), while estrogen diffusion coefficient was estimated using both Graham’s law and

linear interpolation, as these methods gave estimates that were reasonable relative to other

values. We note that these estimated values, while estimates, are taken to be reasonable

relative to the large reported range of diffusion coefficient for oxygen. For the reaction

2 ( )u D u R u
t
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term R(u), we assume negligible molecular degradation comparing to the primary

molecular production/consumption by cells, i.e., | | ≪ | |. More specifically,

, = , − = ± ∑ − | − | − , (2)

where ai and ri are the central position and radius of cell i, respectively, H(x) is the

Heaviside function, and is a defined consumption or production per-volume rate of the

substrate by cell. The positive sign represents production, and the negative sign

consumption. In the current model implementation, we have made the assumption that all

cells of similar phenotypes have the same λ values for each molecule of interest (i.e. all

ER+ cells uptake estrogen at the same volume rate, and all cells have the same per volume

oxygen consumption). In future modeling efforts, this assumption will be relaxed in order

to study the effects of cell heterogeneity and the loss of function within healthy cells to

study the effects of changes in signaling intensity in the transition to a cancerous disease

state.

Biologically, L(u) represents molecular sinks separate from molecular consumption

in routine cellular functionality, i.e. unconsumed molecules in/on cells lost to apoptotic

processes or molecular consumption by receptors/pathways other than the primary

pathways in the model.  We include L(u) in the model for completeness of the mathematical

description of the biological process and for future considerations where the primary

consumption pathway may possibly be blocked. Molecular concentration profiles are also

modified locally by agents due to molecular production or consumption, which are imposed

discretely on the solution (as described in Eq. 3 below), as determined separately from the

reaction term.  For externally supplied molecules (i.e. oxygen and estrogen), we assume

constant and homogeneous saturated concentrations in the surrounding tissue through
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blood. These molecules enter the computational domain through imposition of Dirichlet

boundary conditions (u = 1) at the outer boundary of the TEB.  On the other hand, we

assume that molecules produced by agents within the TEB (i.e., AREG) are free to diffuse

throughout the simulated domain based on the conditions specified in the associated

reaction-diffusion equation.  Hence, far-field homogeneous Neumann boundary conditions

have been implemented in this case, and molecular concentration attenuates towards a

steady-level at the far field.

Time-dependent solutions for diffusion profiles of oxygen, AREG, and estrogen

are obtained numerically using FEM.  FEM solutions are obtained with Sundance [42], a

finite element solver available as part of the Trilinos Project developed by Sandia National

Laboratory.  Solutions are obtained in two dimensions on a triangular mesh generated with

Telis meshing software.  The Dirichlet and Neumann boundary conditions are implemented

as essential and natural boundary conditions in FEM, respectively. Continuum FEM

solutions are modified discretely based on local agent consumption or production of the

corresponding molecule across the computational domain. Molecular consumption and

production by the whole volume of an agent are assigned to its center of mass and

quantified phenomenologically (when unavailable from the literature) in normalized units.

This hybridization of contributions from the discrete component into the continuum

solutions is accomplished numerically by imposing Dirac delta modifications to the

continuum solution profile at the mesh nodes.  The magnitude of node modifications is

determined by sorting agents in a Voronoi tessellation (a method of sorting where all agents

that are closer to a node than any other node are associated with that node, and noting that

the entire cytoplasmic volume of each agent is assigned to the Voronoi cell that contains
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the agent’s center of mass) around the node and then averaging the FEM modification

magnitude (calculated as a per volume rate) of each agent nearest to that node, as described

in the following equation:

= ∑ d
, (3)

where n is the number of agents in a Voronoi cell. Here we assume that the agents equally

divide the Voronoi volume, and thus contributions from agents (cells) of different

phenotypes in the same Voronoi cell are averaged. The computational domain was

discretized in the same order of magnitude as agent radius, as the simple TEB geometry

(which does not vary much over time and from animals to humans [43, 44]) does not

possess any features requiring local mesh refinement, while both numerical and ABM time

step discretization are equal (set to be 30 minutes of simulated time in all results shown; at

each time step, the PDE is solved first; thus we integrate the hybrid model using a semi-

implicit method by lagging the cell positions).  A separate FEM solution is obtained for

each molecule of interest.

ii. Discrete agent-based modeling component

Agent distribution is lattice-based in a hexagonal close packed conformation in two

dimensions. Growth within the TEB is proliferation-driven, where proliferating agents

must displace their neighbors to create room for the new daughter (if there is not already

room to divide left by an agent that has undergone apoptosis). To keep our focus on the

TEB, we describe the model on a moving frame that moves at the same speed as the duct

elongation. Hence, our computational domain contains a fixed section of the TEB, as
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illustrated in Figure 4.2b. Cells exit through the open end of the mature duct and out of

the modeled domain but are counted to estimate the duct elongation rate. Moreover, as our

primary goal is to understand the longitudinal cell distribution and the ductal elongation

resulting from endocrine and paracrine signal mediated cell proliferation, we reduce the

full three-dimensional structure of a TEB to its two-dimensional cross-section by assuming

cylindrical symmetry. When a cellular proliferation event occurs, the daughter cell is

placed at a neighbor position of the mother within the appropriate region of the TEB. If the

selected position is already occupied, the occupant is displaced to make room, and in turn

further displaces one of its neighbors. Cells are assumed infinitely compliant to

displacement, so the process continues until an agent is displaced either into an unoccupied

position previously cleared by apoptosis or out of the computational domain.  Because we

do not currently model the entire mammary gland, any agents displaced out of the

computational domain are counted by phenotype and removed from the simulation.

Apoptosis within the TEB model occurs stochastically, with higher apoptosis

percentages (14.5% per cell cycle) proximal to the lumen-formation region (region 0 in

Figure 4.2b) and lower apoptosis percentages (7.9% per cell cycle) distal to the lumen-

formation region, based on apoptotic populations observed in the murine mammary gland

[45]. Here, we use the reported percentage of cells undergoing apoptosis at a snapshot as

the apoptosis percentage in one cell cycle, based on the observation that apoptosis and

subsequent clearance by macrophages is a rapid process [46]; accordingly we take

clearance of apoptotic cells time to be roughly the same as or less than our cell cycle time

(see Table 4.1). Positions freed by an apoptosis event may be filled by agents displaced

from a proliferation event elsewhere in the TEB or at a later time step. Agents extract the
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values of molecular concentrations at their location for every time step and use these values

to make decisions, and also modify molecular concentrations as a result of molecular

uptake or production. Myoepithelial cells are ER-, while cells in the lumen may be ER+

or ER-.  ER+ cells uptake estrogen, reducing the concentration at their locations, and

respond to estrogen stimulation by proliferating and producing AREG, increasing local

AREG supply. ER- cells may be stimulated into proliferation if the concentration of AREG

satisfies a proliferation threshold.  For both ER+ and ER- phenotypes, proliferation may

only occur if they are not entering necrosis or apoptosis.  Progenitor cells may also

differentiate due to extended quiescence (as is commonly accomplished in confluent cells

in vitro).

Cellular proliferation rates are bounded by cell cycle duration, which has been

demonstrated to be in the 16 hour range in the case of mammary gland [19]. To satisfy this

proliferation threshold, agents count the time since their last mitosis event, and may not

proliferate again until at least 16 hours of simulated time has passed. Both the molecular

signaling thresholds (AREG for ER- and estrogen for ER+) and the cell cycle time

threshold are implemented as binary step functions, where the proliferation of an agent is

disallowed below the threshold. Upon satisfaction of the thresholds, an agent with a stem

or progenitor phenotype may proliferate with a given probability. This proliferation

probability is set to 100% for this study, as we focus our investigation on the effects of

phenotypic distribution and AREG and estrogen thresholds. In future development, this

probability can be regulated by various incorporated microenvironment conditions, such

as the oxygen concentration, or to include the effects of abnormal behavior from

perturbation from a healthy to a disease state. Subsequent to a proliferation event, the new
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daughter cell displaces one of the agents around the mother cell according to the cellular

displacement algorithm described above, moving the TEB forward. The phenotype of the

daughter is determined stochastically and is based on mother type and partially on mother

location.

To quantify the probability of the cell fate, we divide the TEB into proliferative,

differentiation, immature, and mature ductal zones ([1] also see Figure 4.2b), based on a

commonly adopted hypothesis.  The proliferative zone is thought to be composed of

proliferative body cells (region 5) and myoepithelial progenitors (region 1), and is capped

Figure 4.3: Agent phenotype decision flowchart.  At each time step, agents query their
environment to find the values of molecular concentrations of interest.  If (i) agents do
not enter necrosis, (ii) are not chosen to under apoptosis, (iii) they are progenitors, and
(iv) it has been at least one cell cycle since they have proliferated, then they may
proliferate, provided that a stochastic proliferation probability and molecular signaling
thresholds are met.  Agents that are not progenitors or do not meet the proliferation
criteria wait for the next time step.  Proliferation events displace surrounding agents to
make room for the daughter, either filling a location freed by an apoptosis event or
displacing an agent out of the computational domain as the TEB moves forward.
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with cap cells.  These are followed by regions with increasing number of differentiated

cells as cells become farther away from the TEB tip [25]. Progenitors in the proliferation

zone always proliferate symmetrically, while progenitors in the differentiation zone have

a reduced symmetric proliferation probability (see Table 4.1), which is further reduced

25% (arbitrarily) after the mother moves out of the differentiation zone. Baseline

symmetric proliferation probabilities are shown in Table 4.1. A more complete description

of agent decision pathways is shown in Figure 4.3. In our model, stem cells may be either

multipotent or unipotent, as determined by their location within the TEB.  To maintain

phenotypic separation between the lumen and myoepithelium, stem cells within these

regions are restricted to unipotent phenotype, where they may only give rise to the

surrounding phenotype.  Stem cells at the leading cap of the TEB tip are allowed to be

multipotent, giving rise to either unipotent stem or progenitor daughters, as determined by

which region the daughter is placed into.  We note that for the purpose of simplifying

visualization output, we show both multipotent and unipotent stem cells using the same

color (Figures 4.1, 4.4 and 4.9).

IV. Results

We have enlisted, to our best knowledge, literature-supported values into our model

studies whenever possible.  When these values were not available, we sought to determine

a baseline value for the model parameter that result in model behavior in agreement with

physically verifiable values. In brief, baseline values must result in biologically relevant

ductal elongation rates (previously reported at 500 µm per day [47, 48]), cellular

distributions, and reasonable phenotypic transition from the highly proliferative zone



www.manaraa.com

65

within the TEB to the mature, mostly differentiated duct. The chosen baseline values as

Figure 4.4: Effects of proliferation cycles before differentiation.  (a) One cycle before
differentiation results in progenitor depletion, and apoptosis events overtake
proliferation, disrupting TEB morphology, seen here as numerous holes disrupting
confluency in the TEB.  Morphology disruption shown is after three simulated cell
cycles.  (b) Two cell cycles before differentiation maintains TEB homeostasis, with
noticeable differentiated population within the proliferation zones.  (c) Three cycles
before differentiation reduces differentiated population in the proliferation zone and
results in increased progenitor population within the differentiation zone.  (d) Four
cycles before differentiation; the proliferation zone is now mostly free of differentiated
agents.  Background colors within the TEB show a graphical representation of the
numerical solution of oxygen concentration, with blue corresponding to higher
normalized concentration (up to 1.0) around the boundary and green corresponding to
the lower concentration. See the online version of this article for better distinction of
the phenotypic color codes.
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quantified from the literature or quantified in agreement with literature-supported values

are summarized in Table 4.1 (we note that normalized and/or phenomenologically

determined values are not included, as they are not directly translatable to biologically

measured values). In all simulations described, any model parameter not explicitly varied

was assigned the baseline value.

i. Cell cycles before differentiation

Within the TEB, myoepithelial and luminal progenitors are restricted in the number

of mitosis cycles they may undergo before differentiation into a non-progenitor phenotype,

while stem cells are allowed to proliferate indefinitely. In our model, if progenitor cells

were only allowed to proliferate once before differentiation, it was insufficient to maintain

a progenitor population, resulting in growth arrest and loss of confluency in the TEB

(Figure 4.4a).  Without a sufficient progenitor population, apoptosis events dominated and

the TEB cellular population was diminished, with greatly arrested ductal elongation rates

and disruption of correct organ structure. Conversely, in the case of four proliferation

cycles before differentiation (Figure 4.4d), many progenitors did not remain in the TEB

for sufficient cell cycles to differentiate, resulting in mature duct with a biologically

irrelevantly large progenitor cell population. Reduction to three proliferation cycles before

differentiation (Figure 4.4c) reduced this number, with fewer than 30% of cells entering

the mature duct with progenitive phenotype, and reduction to two proliferation cycles

before differentiation (Figure 4.4b) further reduced the percentage of progenitor cells in

the mature ductal zone to around the 10% range.  This result is in good accordance with

the literature, where percentages of progenitor cells within the mature mammary gland are
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found to be under 10% (or slightly over 10% for the nulliparous gland) [49].  Accordingly,

we identify 2-3 (2x–3x) cycles before differentiation (a quantity we will henceforth refer

to as the proliferation cycle threshold) as the most likely to be biologically relevant, and

this is also in agreement with experimental measurements as well [1]. Together, we have

determined that TEB growth is highly dependent on the number of progenitor proliferation

cycles before differentiation. Note that because we only model the TEB, we do not

consider differentiation events that may occur after cells enter the mature duct.

ii. Symmetric vs. asymmetric division

The phenotypic fate of daughter cells has been reported to contain high

heterogeneity amongst different tissues and developmental stages. Our model allowed us

to specify the stochastic probability that a progenitor will divide symmetrically (increasing

the progenitor population) or divide asymmetrically, giving rise to a differentiated

daughter. We have made the assumption that, at the onset of mammary gland pubertal

growth, all progenitors may undergo the maximum allowed number of proliferations before

differentiation.  This resulted in initially increasing numbers of progenitors as new cells

generated from symmetric proliferation events displace differentiated cells that were

initially seeded at the beginning of the simulation until the proliferation cycle threshold

was reached (see Figure 4.5).  Subsequent to reaching this threshold, differentiation events

reduced progenitor population and the entire cell population transitioned towards

progenitor/differentiated homeostasis.
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In the model, cell agents differentiate immediately upon hitting their proliferation

cycle threshold. In the case of no signaling threshold, proliferation events were more

frequent relative to the signaling limited case, with progenitors always proliferating as soon

as they had waited one cell cycle (provided all other conditions were met). Increased

proliferation events also led to an increase in differentiation events as cells reached the

proliferation threshold, and thus a faster transition to population homeostasis (Figure

4.5a,b), resulting in reduced temporal fluctuation of total progenitor population count in

Figure 4.5: Progenitor population within the TEB with different symmetric
proliferation probabilities (1.0 = 100% symmetric proliferation).  (a,b) Progenitor
population vs. simulation iteration without signaling threshold in place.  (c,d)
Progenitor population after incorporation of signaling thresholds.  3x proliferation
events maintains a larger progenitor population within the TEB relative to 2x.  In each
case, progenitor population is seen to increase until differentiation events start
(indicated by vertical lines), reducing the progenitor population until it reaches
homeostasis.  Each curve represents one simulation, and each simulation step
corresponds to 30 minutes of simulated time, thus 32 simulation increments
correspond to one simulated cell cycle.
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subsequent cell cycles. As expected, higher percentages of symmetric proliferations

resulted in higher total percentage of progenitors in the TEB (Figure 4.5). Ductal

elongation rates were lower for two proliferation cycles relative to the three proliferation

cycle case (Figure 4.6a,b) because increased proliferation cycles maintain a larger

progenitor population, allowing for more proliferation events per cell cycle.

iii. Signaling thresholds

Perturbation simulations of the percentage of symmetric proliferation events were

then repeated with molecular signaling threshold restrictions in effect (Figure 4.6c, d),

where baseline signaling thresholds were set equal to continuum molecular concentration

Figure 4.6: Ductal elongation growth rates with 2x and 3x proliferation cycles before
differentiation with symmetric proliferation probability perturbation (1.0 = 100%
symmetric proliferation).  (a,b) Daily elongation rates without molecular signaling
threshold and (c,d) daily elongation rates with molecular signaling threshold.  In both
cases, higher elongation rates are observed with 3x proliferation cycles before
differentiation, and molecular signaling thresholds reduce elongation rates relative to
the unregulated, purely proliferative case. All plots show elongation rates observed
over 7 simulated cell cycles.
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(set with the same normalized value for all simulations at time t=0; molecular perturbation

values are relative to this initial concentration). Interestingly, varying progenitor symmetric

proliferation percentages did not have an impact on elongation rates, as observed from the

uniform simulated elongation rates for each parameter variation case (Figure 4.6a-d). The

number of cycles before differentiation still influenced elongation rates, as higher

progenitor populations allowed for more proliferation events both in the presence and

absence of a molecular signaling threshold.

We then sought to gain insight on the effects of specific perturbations in molecular

parameters (i.e., thresholds for estrogen and AREG) on model output (i.e., ductal

elongation rate). Initially, thresholds for both molecular parameters were varied together

(Figure 4.7). Signaling threshold was found to closely control simulated ductal elongation

rates. Figure 4.7 reveals how the threshold affects ductal elongation rates. An increase of

Figure 4.7: Effects of synchronized ±10% estrogen and AREG signaling threshold
variation on ductal elongation rates. Proliferation events are sensitive to molecular
signaling thresholds when both estrogen and AREG thresholds are perturbed in unison
(shown here).  Higher (+) thresholds inhibit proliferation events, stunting ductal
elongation rates, while lower (-) thresholds are less restrictive, resulting in more
proliferation events and higher elongation rates. All plots show elongation rates
observed over 7 simulated cell cycles.
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as little as 7-10% above the baseline led to a 60-80% reduction in ductal elongation rate

(from 423.75 to 80.25 µm/day for 2x before differentiation, and from 582.2 to 226.9

µm/day for 3x), which is low compared to the established level in literature, where pubertal

ductal elongation rates have been reported to be around 500 µm /day [47].

Simulations were then conducted with independent perturbation of each individual

molecular threshold (±10% signaling threshold; Figure 4.8).  One threshold was subjected

to ±10% perturbation, while the other remained fixed at the baseline value (see Table 4.1).

Ductal elongation rates were reduced at higher thresholds for both cases, with greater

reduction in the case of high estrogen thresholds relative to high AREG thresholds.  Linear

best-fit curves were generated for the ductal elongation rate data to provide quantification

of threshold growth arrest effects. Then, the magnitude of the slope of each regression line

was used as a measure to estimate the rate of change of output for one unit of change in

input; the greater the magnitude of the slope, the greater the rate of change, and thus the

bigger impact the parameter has on model output. As a result, for both cases, estrogen

signaling was found to have more impact on ductal elongation rate than AREG signaling

(slope magnitude (AREG vs. estrogen perturbation) increased from 804.36 to 1933.98 for

the 2x case, and from 1242.10 to 2442.78 for the 3x case). In the case of high AREG

thresholds, ER- cells show significant population decrease (due to reduced proliferation

events), while ER+ cells proliferate uninhibited at their baseline threshold (data not

shown).  Imposition of high estrogen thresholds, however, resulted in reduction of

proliferation events in both ER+ and ER- phenotypes.
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iv. Cell types in each region

We have quantified the types of cells in each region (see Figure 4.2b for region

definitions) through longer simulation runs (two weeks of simulated growth) using baseline

values as identified in Table 4.1.  At the end of each simulation step, agents of each type

were counted across the computational domain. Simulation results are shown in Figure

4.9. Regions closer to the TEB tip (i.e., regions 1 and 5) maintained larger populations of

progenitors than differentiated agents, with 3x proliferation before differentiation

maintaining larger total progenitor populations relative to the 2x case.  In the 2x before

differentiation case (Figure 4.9a), differentiated population quickly overtook progenitor

Figure 4.8: Effects of independent ±10% signaling threshold variation on ductal
elongation rates.  AREG restricted growth (a, b) shows reduced daily elongation
reduction relative to estrogen restricted ductal elongation.  Estrogen restricted growth
resulted in more than twice the ductal elongation reduction relative to the AREG
restricted case. Each data point represents the mean of 5 simulations with standard
deviations; linear best-fit curves are shown as dashed lines. : the slope of a regression
line.
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population in regions 2 and 6.  In regions 3 and 7 cellular population was primarily

differentiated.  For the 3x proliferation before differentiation case (Figure 4.9b), increased

proliferation events slowed the transition from progenitor dominated to differentiated

dominated populations, as differentiated populations did not overtake progenitors until

Figure 4.9: Cell types in each region for (a) two cycles before differentiation and (b)
three cycles before differentiation (cell counts in the mature duct not shown).  Data
shown in both cases are taken from one sample simulation with baseline molecular
signaling thresholds in effect, and myoepithelial plot colors correspond to cellular
phenotype coloration shown in Figure 4.1, while the luminal color scheme has been
simplified to increase readability.  Regions closer to the TEB tip contain primarily
progenitors with some differentiated agents that have hit the proliferation threshold
limit, while regions farther from the TEB tip have increased differentiated populations.
More proliferation cycles before differentiation maintain larger progenitor populations
in all regions.
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regions 3 and 7. In both cases, phenotypic population was volatile in the short portion of

mature duct that we model (i.e., regions 4 and 8), and many of the cells that move into this

region move out of the computational domain before they are counted; accordingly cell

counts in these regions are not shown. Note that because counts were taken at the end of

each simulation step, it is possible that an agent may have passed through a region in the

simulation step and accordingly not been counted during its short residence that region.

V. Discussion

Through a hybrid multiscale ABM, we have explored the contribution of cellular

phenotypic hierarchy, phenotypic distribution, and the effects of endocrine and paracrine

signaling on ductal elongation rates within the developing mammary gland. We examined

the effects of proliferation cycles before differentiation, symmetric vs. asymmetric

proliferation probabilities, and the influence of molecular signaling threshold on elongation

rates and phenotypic populations within the TEB. Under our assumption that all daughters

within the proliferation zone will be progenitors, we demonstrate that elongation rates were

driven primarily by proliferating population renewal within the proliferation zone.

Molecular signaling thresholds were found to provide consistent ductal elongation rate

regulation, with elongation rates shown to be sensitive to molecular signaling intensity.

The model also demonstrated that 2-3x cell proliferation cycles before differentiation

accurately reproduced biologically relevant ductal elongation rates and cellular phenotypic

distributions within the TEB; this result confirms previous experimental data as well [1].

Achieving a primarily differentiated population within the mature mammary gland

necessitates rapid phenotypic transition from primarily progenitor phenotypes within a
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short residence time in the TEB. We find that reduction of symmetric proliferation events

in the differentiation zone in combination with the proliferation cycle threshold was

sufficient to induce this phenotypic transition, in agreement with literature reported values

[49].

In our simplified model of cellular phenotypic hierarchy within the TEB (Figure

4.1), we observed that the number of proliferation cycles before differentiation in

progenitor cells plays an important role on simulated replication of biologically correct

TEB growth and functionality. Inadequate proliferation cycles before differentiation

(Figure 4.4a) resulted in a TEB that rapidly exhausts its supply of progenitors, all but

halting mammary gland growth and disrupting proper TEB structure as the few remaining

progenitors and stem cells competed with apoptosis events to maintain the proper gland

structure.  This ultimately resulted in loss of confluency, and is seen as holes that have

developed throughout the TEB in Figure 4.4a. Conversely, greater than 3 proliferation

cycles before differentiation (Figure 4.4d) prevented adequate time for many progenitors

to differentiate prior to exiting the TEB, resulting in biologically unrealistic numbers of

progenitors in the mature duct.  Our results show that 2-3 proliferation cycles before

differentiation (Figure 4.4b,c) resulted in mammary gland growth which is in good

agreement with the literature, both in terms of ductal elongation rates [47, 48] and

phenotypic populations within the mature gland [49].  While it is likely that the number of

proliferation cycles will vary from cell to cell in vivo, we demonstrate evidence that the

distribution is likely centered around the 2-3 proliferation cycles range.

Effects from changing the stochastic probability of symmetric divisions was found

to be minimal, likely due to short cellular residence times within the TEB (see Figure 4.6).
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At 2x, cells average three cell cycles in the TEB before being displaced into the mature

duct and out of the computational domain, while average residence time is reduced to two

cycles in the 3x case. In both cases, residence time in the TEB is shorter than or equal to

the number of cycles necessary for a cell to differentiate due to hitting the proliferation

threshold, thus minimizing the effects of different symmetric proliferation probabilities.

Ductal elongation rates were consistently higher in the 3x case due to larger progenitor

populations, with increased symmetric proliferation events contributing only minimally to

the higher elongation rates.

Our results demonstrate that imposition of signaling molecule thresholds onto the

proliferation with apoptosis model resulted in reliable TEB cellular proliferation and

mammary gland ductal elongation rate regulation. The ductal elongation rates were lower

than the unrestricted case of pure proliferation in the absence of any signaling threshold

(Figure 4.6c, d).  This indicates that signaling thresholds may act as an elongation rate

regulation mechanism in the pubertal mammary gland by reducing the cellular proliferation

rates.  The observed reduction of proliferation events and ductal elongation rates due to

molecular threshold effects implies that the mammary gland has the potential to elongate

at faster rates than reported in the literature [47] if molecular signaling is increased in

intensity, and this can occur with a proliferation cycle threshold as low as two cycles before

differentiation. It should be noted that molecular production rates and boundary values,

uptake rates, diffusion constants, and signaling threshold are not independent. All have a

direct influence on and contribution to the time dependent solutions of the molecular

profiles.  Unfortunately, we have not been able to obtain literature-based quantified values
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for all parameters; thus, we have calibrated a set of parameter baseline values that gave rise

to biologically realistic elongation rates and phenotypic distributions.

Ductal elongation rates were found to be consistently reduced with higher

proliferation thresholds, and, under the conditions implemented in the simulations

presented here, cellular proliferation rates exhibited higher sensitivity to increased

estrogen-mediated proliferation than in the AREG-mediated case.  When cellular

proliferation events within the ER- phenotype were restricted by the AREG threshold, ER+

phenotype cells were able to proliferate as normal, as estrogen signaling is not affected by

downstream signaling events.  However, restriction of proliferation events of the ER+

phenotype due to higher estrogen thresholds constituted an upstream interruption in the

signaling pathway, and lead to interruption of downstream AREG mediated proliferation

in the ER- population.  Initially, estrogen-mediated reduction in ER+ proliferation events

resulted in increased ER- population within the TEB as the ER+ proliferation events

decreased.  This population shift lead to a change in AREG signaling effectiveness, as

AREG production decreased concurrently with an increase in AREG consumption.

Ultimately, this resulted in reduced ER- proliferation events due to upstream reduction of

ER+ proliferation and AREG production.  Thus, our results indicate that, under simulation

conditions as presented here, mammary gland ductal elongation is more sensitive to

disruptions in estrogen signaling than AREG signaling, as estrogen signaling disruption

ultimately decreases proliferation in both ER+ and ER- phenotypes, while AREG signaling

disruption only affects the ER- population. Ductal elongation rates were also observed to

be more sensitive to estrogen signaling in the 2x case relative to the 3x case.  It is likely

that the larger progenitor population maintained by the greater number of proliferation
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cycles is able to offset some of the cellular proliferation restriction effects of reduced

signaling molecule intensity.

Cell types in each region were found to be variable, with stochastic events resulting

in population shifts over time.  However, trends can clearly be seen, with progenitor

population consistently decreasing farther away from the TEB tip, primarily due to

differentiation events after progenitors reach their maximum cycle before differentiation,

and with differentiated population also subsidized from decreased symmetric proliferation

events as progenitors are distanced from the TEB tip. Increased proliferation cycles before

differentiation resulted in larger progenitor populations in each region of the TEB,

including greater percentages of progenitors left behind in the mature duct trailing the TEB.

While two proliferation cycles before differentiation resulted in progenitor populations in

the mature duct closer to values reported in the literature, this likely does not elucidate the

full picture, as additional differentiation events after agents enter the mature duct may have

downstream effects on cellular population distribution in the fully formed mature gland.

It should be noted that ductal elongation rates predicted with a two-dimensional

model may be lower than elongation rates possible in the three-dimensional case, as in the

3D case the ratio of progenitors in the TEB to number of cells necessary to elongate the

duct is higher. Similarly, under identical boundary, diffusion, and molecular uptake

conditions, internal molecular concentrations would also be higher in a 3D model.

However, this simplified case sheds valuable insights onto the effects cellular

differentiation pathways and phenotypic transition decisions play in the morphological

development of the mammary gland. Future development of the model will transition to a

three-dimensional computational domain and remove the restriction of on-grid agent
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movement. A model of healthy organogenesis can also provide a jumping-off point for

transition to disease state.  In future computational experiments, we will incorporate

another type of stem cell into the model (alveolar stem cells) and then break the rules that

maintain homeostasis to seek insight into the signaling and phenotypic transitions involved

in disruption of normal mammary gland development.

Table 4.1: Baseline values of key model parameters.  When not available in the
literature, diffusion constants are interpolated from values from structurally similar
molecules (*) or estimated from known values based on relative molecular weights (**).
Other uncited values were determined from model calibration.  Stem cell symmetric
proliferation rate has been reduced 1% from the value reported in [10].
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I. Abstract

The terminal end bud (TEB) is a bulbous structure composed of highly

proliferative cells that is responsible for mammary gland development during the

pubertal stage.  This is a highly organized process, involving cellular differentiation

hierarchies regulated by endocrine and paracrine signaling.  Here, we present

development of a lattice-free, three dimensional multiscale agent based model of the

TEB to study the effects of cellular phenotypic hierarchies, endocrine and paracrine

signaling, and proliferation demographics on pubertal mammary gland development.

Cells in the TEB experience complex physical interaction during the active growth

involved in pubertal ductal elongation, which we represent mathematically based on

the physical forces involved in cell-cell and cell-microenvironment interactions.  We

observe that maximum ductal elongation rates are achievable due to each progenitive

phenotype cell only undergoing a couple proliferation cycles before losing the

progenitive capability, and that molecular signaling is necessary to restrict ductal

elongation to biologically relevant rates.  Cellular proliferation and growth is

sufficient to achieve these elongation rates in the absence of other cellular behaviors

such as migration or conformational changes.  This model serves as a valuable tool to

gain insights into the cell population dynamics of mammary gland development, and

can serve as a foundation to study the early stages of breast cancer development based

on endocrine-mediated phenotypic population shifts.
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II. Introduction

The mammary gland serves an essential role in mammalian biology.  Consisting of

only a rudimentary ductal tree structure at birth, the majority of glandular development is

delayed until puberty, when a branched tree-like structure develops and invades the fat pad

away from the nipple in response to upregulation of endocrine and paracrine signaling [1].

This growth and ductal elongation is driven by terminal end buds (TEBs), bulbous

structures composed (in part) of a population of highly proliferative epithelial cells.  The

TEB is dual-layered in structure, with an outer layer of myoepithelial cells (regions 1-4,

Figure 5.1) and an inner region of highly proliferative luminal epithelial cells (regions 5-

8, Figure 5.1), corresponding to the dual layered structure in the mature mammary duct.

Proximal in the TEB, highly proliferative luminal cells may be layered 5-6 cells thick

(region 5, Figure 5.1).  High cellular proliferation rates within the TEB allow for rapid

ductal elongation, which has been observed as high as 0.5mm per day [2].

Pubertal ductal growth and branching is induced by upregulation of estrogen

signaling and the associated response by estrogen receptor α positive (ER+) progenitor

cells within the TEB [3].  Among other signaling molecules (see e.g., [4]), amphiregulin

(AREG) production is upregulated in ER+ cells within the TEB [5], and serves as a

secondary indirect downstream stromal signaling mechanism to the estrogen receptor

negative (ER-) phenotype population within the TEB in pubertal cellular proliferation

upregulation and ductal elongation [5, 6].  The progenitor population is maintained by

progenitor self-renewal and a small number of multipotent ER- stem cells distributed

randomly within the TEB [7], which may self-renew (divide symmetrically, giving rise to
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two stem type daughters), or divide asymmetrically, giving rise to one stem and one

progenitor daughter [6].

Within the TEB, a structured hierarchy of cellular development plays an important

role in regulating ductal elongation rates.  The proliferative population maintains rapid

cellular proliferation necessary for ductal elongation, while the mature duct trailing the

TEB is composed primarily of terminally differentiated, non-proliferative cells.  This

requires an organized transition from proliferative to differentiated phenotypes in a

relatively short physical and temporal space.  Here, we present a three dimensional, lattice-

free multiscale agent based model of the TEB structure with cellular phenotype hierarchy

and estrogen and AREG signaling to study the dynamics of cellular populations within the

TEB.  This serves as an expansion of our previous two-dimensional TEB modeling work

[8].

III. Methods

i. Continuum Scale

Tissue scale parameters include oxygen, endocrine and paracrine molecular

distributions throughout the TEB, which are assumed to diffuse freely through the tissue.

These are represented mathematically by the reaction diffusion equation, a modification of

Ficks’s second law of diffusion:

2 ( )u D u R u
t

  


, (1)
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where u is time-dependent molecular concentration, with corresponding molecular

diffusion constant (D) and reaction term (R). Diffusion constants for each molecule of

interest are determined from the literature where available [9, 10], or estimated based on

similar molecules.  We obtain time dependent continuum solutions using finite element

methods (FEM) with direct linear solvers in C++ through implementation of Sundance, a

FEM package available as part of Trilinos (an open source numerical solver library

developed by Sandia National Laboratory).  Molecules that enter the TEB from the

surrounding tissue (i.e. oxygen and estrogen) are introduced numerically as constant

Dirichlet boundary conditions, while molecules which are sourced from within the

computational domain (i.e. AREG) are allowed to diffuse freely within and out of the TEB

through implementation of far-field homogeneous Neumann boundary conditions.  Time-

dependent FEM solutions are obtained for each time step on a 3D tetragonal mesh (a

schematic of the computational domain is shown in Figure 5.1) and time-dependent

numerical FEM solutions are incremented with the same time step as the discrete scale.

Figure 5.1: A schematic of the 3D computational domain of TEB.  Regions 1-4 compose
the myoepithelial layer, and 5-8 the luminal layer.  Region 0 is the ductal formation zone.
All Dirichlet boundary conditions are applied on the outermost layer of the
myoepithelium.
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ii. Discrete Scale

At the discrete cellular scale, every cell is represented by a unique agent, each with

its own phenotype, signaling molecule sensitivity, and position, using a method known as

agent based modeling (ABM) [11].  Agents may proliferate, move, uptake or produce

signaling molecules, consume oxygen, grow, and undergo apoptosis.  Apoptosis within the

luminal layer is instrumental in formation of the duct cavity, and occurs stochastically in

the model based on biologically observed rates of 7.9% distal to the duct formation region

(region 0, Figure 5.1) and 14.5% proximally [12].  Agents may also experience hypoxia

and necrosis, although due to the small scale of the TEB relative to the Krogh length for

oxygen this behavior is not observed in the normal TEB.  When an agent with progenitor

phenotype undergoes a mitosis event, the cytoplasmic volume is divided evenly between

both daughters.  Subsequent to a mitosis event, agents enter G1 phase for 7.5 hours of

growth (taken relative to the percentage of time spent in G1 in a 24 hour cell cycle time),

where growth is taken to be a function of cellular volume [13].  Thus cells experience an

exponential growth pattern until they reach full size, at which point they enter into S phase.

The events of S and G2 phases are not explicitly modeled as they are not the focus of this

study.  Cells may repeat the cell division cycle until they hit a threshold for maximum

number of divisions (previously determined to be 2-3 cycles), at which point they

differentiate into a non-proliferative phenotype.  Proliferation events may only occur if

molecular signaling thresholds (as described in Figure 5.2) are satisfied.

In our lattice-free 3D model, physical interactions between agents are determined

computationally based on an approximation of the real-world physics of cellular
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interactions.  Although agents are free to move without the restrictions of a lattice structure,

they are subjected to an imposed TEB geometry based on data from [14].  Cells adhere to

other cells with a preferential adhesion towards same or alike phenotypes [15], and to the

external basement membrane (for myoepithelial cells).  While we explicitly model the

basement membrane ECM that defines the outer boundary of the TEB, the structural effects

of ECM between cells internally in the TEB is implicitly approximated mathematically as

a summation of adhesion forces between agents and forces that resist cells sliding or rolling

against each other.  Proliferation events and cellular growth displace their neighbors

(without a preference for a particular direction (i.e. towards or away from the TEB tip)

based exclusively on the physical interaction between cells.  In this way, ductal elongation

is driven through cellular proliferation and growth.  Cells interact inelastically, and are

allowed to deform due to pressure from surrounding cells.  Although we do not explicitly

model this conformational change in each individual agent, we implement this

mathematically through a coefficient of restitution, where some energy of interaction is

lost as it is converted into deformational energy in the agent.   Cells also experience motion

dampening due to the aqueous environment, and will lose kinetic energy over time in the

absence of external forces or any contact between other cells or ECM.

iii. Hybrid Modeling Methods

In the model, discrete and continuum methods and scales are explicitly linked to

form a multiscale model [16].  Cells interact with the continuum solutions of molecular

concentration bidirectionally, and dependent on phenotypic characteristics.  At each time

step, agents query their environment to determine local molecular concentrations, which
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are linearly interpolated to the agent’s location from the solutions at the nearest nodes in

the FEM solution.  Agents consume oxygen, and may either uptake or produce signaling

molecules base on agent phenotype (see Figure 5.2).  These molecular concentration

changes are added to the continuum solutions through imposition of Dirac delta functions

on the nearest node, as identified through Voronoi tessellation (a method where the

computational domain is divided into regions which encompasses the volume closest to

each individual node).  Agents with progenitive phenotype may only undergo a mitosis

event if molecular concentration thresholds are satisfied, and only after completing a full

cell cycle from their last proliferation event, which we take to be 16 hours based on [14].

Figure 5.2: Cellular phenotypic types, differentiation pathways and signaling.  Cells
within the proliferative population possess the ability to self-renew, where they divide
symmetrically into two phenotypically similar progenitor cells, or to divide
asymmetrically, where one daughter is proliferative and the other is differentiated.
Upon hitting a built-in proliferation threshold, progenitors divide symmetrically into
two differentiated daughters.  Proliferation events are dependent on a signaling molecule
threshold based on phenotype, which must be satisfied before mitosis can occur.
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IV. Results and Discussion

Based on previous work [8], we determined that progenitor cells in the TEB likely

undergo 2-3 mitosis cycles before differentiation (which we refer to as 2x-3x in this

document). In [8], the ductal elongation rate could reach roughly 625-895µm/day in the

absence of growth  restriction due to molecular signaling threshold limitation (i.e., by

removing the effects of signaling threshold on ductal elongation).  To perform validation

of the 3D model, we repeated this experiment and compared maximum theoretical growth

rates to those observed biologically and in the 2D model.  Note that currently we assume

axial symmetry, and only simulate half of the TEB (as shown in Figure 5.3).  Due to

geometry differences between the 2D and 3D cases, seeding the 3D TEB (under the same

probabilities as the 2D model) results in ~12% higher progenitor density in the total cellular

population at the start of the simulation.  Our preliminary results show that the maximum

possible growth rates have increased roughly 60% over rates observed in the 2D modeling

case (61.6% and 60.1% in the 2x and 3x cases, respectively), consistent with our

expectations (Figure 5.4a).  This is expected because ductal elongation in the 3D case only

requires 9.5 as many cells per unit of elongation as the 2D model (relative to the ~14x more

progenitors in the 3D TEB), so we expect to see higher maximum possible growth rates in

the 3D case.  The maximum possible ductal elongation rates we observe are higher than

those observed in nature, suggesting that molecular signaling mechanisms play a crucial

role in regulation of pubertal mammary gland cellular proliferation and the resulting ductal

elongation.

Interestingly, we observed that ductal elongating rates are slow in the early stage of all

simulations (Figure 5.4b, time steps 1-16).  Although proliferation is occurring at a
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comparable rate to later time steps, total cellular volume increases slowly at first because

daughter growth is a function of cytoplasmic volume.  Thus new daughters grow slowly

Figure 5.3: Sample simulation output.  (a) Interior view of the TEB at the start of a
simulation; regions 1 & 5 are seeded with only proliferative phenotype, with
increasing differentiated population away from the TEB tip (left). (b) Simulation after
3 cell cycles, note that there are now differentiated agents in the proliferation zone
(regions 1&5) due to agents reaching their proliferation cycle threshold.  (c)
Simulation after 7 cell cycles, shows further mixing of phenotypes in the proliferation
zone as self-renewal events are balanced by differentiation events.  Simulated time is
shown in the bottom left, and all images shown are for the 3x before differentiation
case. Color scheme as shown in Figure 5.1.
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immediately after mitosis, contributing less to ductal elongation than when they are closer

to being fully grown.  When combined with the fact that the smaller daughters can be

packed together more tightly, the early proliferation events do not contribute to ductal

elongation as much as cellular growth does later in simulation time.  Thus ductal elongation

is observed to be primarily a result of cellular growth subsequent to proliferation events.

Figure 5.4: (a) Ductal elongation per cell cycle.  After initial seeding, growth rates
increase until differentiation events start to occur due to progenitors reaching their
proliferation threshold (for either 2x or 3x cycles before differentiation).  Growth is seen
to be higher in the 3x case, as more self-renewal cycles maintains a larger total
progenitor population.  (b) Ductal elongation per time step.  Note decreased elongation
rates for t < 16 (indicated by dashed line); reduced cellular volume allows for tighter
cell packing in new daughters.  Subsequent to this initial stage, elongation rates are
variable but consistent, and can be seen to be higher for the 3x case.  One time step =
30 minutes.
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We have made the assumption that proliferation events are more likely towards the

TEB tip (based on biologically observed higher concentration of progenitors in this region,

in what we call the proliferation zone (Figure 5.1)), and are relatively unlikely in the

mature duct, as progenitor populations are found to be small in the nulliparous mature duct

[17].  Combined with differentiation events due to hitting the proliferation threshed, this

results in reliable maintenance of a progenitor population in the proliferation zone, and

progressively reduced progenitive population in the differentiation, immature, and mature

zones, respectively.  Differentiation events due to hitting the proliferation threshold still

occur in the proliferation region, resulting in a small population of differentiated agents in

this region, which is inversely proportional to the number of proliferation cycles before

differentiation. Thus the assumption of proliferation and differentiation zones is supported

by our model, and model validation is supported both by observed growth rates and

phenotypic distribution observed in living systems.

In our next work, we will further investigate how changes in molecular signaling

impact ductal elongation. We will also incorporate this model with the phenotypic

hierarchy and estrogen/AREG signaling pathways into a breast cancer (ductal carcinoma

in situ, DCIS) model to study ER+ vs. ER- DCIS with the aim of gaining new insights into

how hormonal concentrations influence the development of the phenotypically distinct

(and with very different prognoses) types of DCIS.
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I. Abstract

Ductal carcinoma in situ (DCIS) is the most commonly diagnosed form of non-

invasive breast cancer, constituting 20% of all new breast cancer cases in the United

States. Although non-invasive, DCIS is usually treated surgically through resection.

Interestingly, long-term survival studies have shown that patient survival rates are

not significantly impacted by the type or resection, indicating that increased breast

conservation through minimized surgical resection may indeed be possible. This

requires a greater understanding of disease development, so that clinicians may more

accurately determine surgical margins which minimize patient impact while

maintaining survival rates. To this end, we have developed a three-dimensional,

lattice-free multiscale agent based model of DCIS designed to help quantify ductal

invasion rates, in order to allow clinicians to better estimate disease age and extent of

invasion, and to predict surgical margins based on parameters obtainable from non-

invasive testing (i.e., mammography). Here, we present the model development to

date, and discuss some preliminary results.

II. Introduction

DCIS accounts for roughly 20% of newly detected breast cancers [1], with upwards

of 60,000 new cases annually. DCIS is characterized by loss of luminal epithelial cell

homogeneity, resulting in invasive epithelial cell growth into (but constrained within) the

mammary ductal cavity. Although not malignant in itself (in fact, all DCIS is considered

stage 0 breast cancer), DCIS is associated with invasive breast cancer and a higher risk of
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recurring breast cancer, thus usually necessitating treatment through lumpectomy followed

by radiation and sometimes hormone therapy, or in other cases even full mastectomy.

Breast cancers are categorized according to estrogen receptor (ER), progesterone

receptor (PR), and HER2 receptor status; as many as 75% of DCIS cases are reported to be

ER α positive (ER+) [2], with lower instances of PR+ and HER2+ DCIS. Furthermore,

transition to an invasive phenotype has been shown to be more frequently associated with

ER+ DCIS [3], and roughly 70% of all breast tumors are ER+ [4]. DCIS is categorized

histologically through cell distribution (archeology) and cytological structural features

(grade, i.e. DCIS cell proliferation rate, where higher grades are associated with higher cell

proliferation rates and increased invasive behavior).

Successful treatment of DCIS by surgical resection while achieving minimal patient

impact requires accurate assessment of surgical margins. DCIS invasion requires epithelial

cell motility, which may be initiated by epithelial to mesenchymal transition (EMT) [5],

and is shown to be associated with loss of ERα functionality [6]. Estrogen signaling to ERα

results in increased mammary epithelial proliferation through downstream paracrine

epithelial to stromal signaling in the ER- cell population [7], while reduced estrogen

availability has been shown to restrict cellular proliferation and mammary gland

development while increasing ER density in the ER+ mammary epithelial population

within bovine heifer pubertal gland development [8]. Estrogen signaling to the ER+

population results in upregulation of amphiregulin (AREG) production within this

population, which signals to EGF receptors in the stroma, and induces downstream stromal

to endothelial upregulation of proliferation within the ER- population thorough fibroblast

growth factor (i.e. FGF-2,7) signaling (among others, which are not examined in this
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model) [9]. Contrary to the normal pubertal gland development, estrogen signaling to the

ER+ population has been shown to induce proliferation within ER+ breast cancer cells [7].

We have been developing integrated mathematical models to understand cancer

biology and treatment [10, 11]. Here, we present a three-dimensional, lattice-free

multiscale agent based model (ABM) [12] to study the effect of estrogen endocrine and

downstream AREG through FGFs paracrine signaling in DCIS ductal invasion, invasion

rates, and development of DCIS architectures. The duct is modeled as two cylindrical cell

layers, an outer myoepithelial (basal) layer, and an inner luminal layer, which together

represent the mature mammary duct. Because our focus is the effects of cell dynamics and

signaling within the mammary duct, we have restricted our modeling efforts to only model

a section of a single duct branch, approximated with a cylindrical geometry. Cells in the

mature duct layers (myoepithelial and luminal) are confined to their respective layers, but

may be displaced within the region by growth/movement events in the surrounding cells.

III. Methods

i. Discrete Scale

Within the discrete portion of the model, all cells are represented as unique discrete

agents. Each agent has its own physical location, phenotype, and contribution to both

discrete and continuum scales (all cells consume oxygen, and signaling molecules are

consumed or produced based on agent phenotype as shown in Figure 6.1). All agents in

the model are free to move based on environmental events, such as the physics of cell

growth, movement, and proliferation, but constrained by the mature duct geometry and

resistance to displacement in neighboring agents. Agent movement and displacement is
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determined mathematically through solving the physics of cell-cell interactions, and

includes force balance of cell-cell physical interaction, cell-cell adhesion, cell deformation

through inelastic interaction (not explicitly modeled, but implemented mathematically as a

coefficient of restitution), and viscous motion dampening from the fluid environment.

Cells in the model must satisfy a set of biologically-based conditions before they

proliferate, including verification of adequate nearby room in which to divide, the

satisfaction of local cell proliferation upregulating signaling molecule concentrations,

adequate local oxygen concentration (i.e. the cell is not hypoxic, as is common in tumors),

and completion of all phases of the cell’s previous proliferation cycle.  Upon a mitosis

proliferation event, the mother’s cytoplasmic volume is divided evenly between both

daughters, with the cleavage furrow occurring at a random orientation, but within the

geometric restrictions of the model (e.g. a mitosis event in a cell monolayer must occur in

an orientation that maintains the monolayer). Daughters experience cytoplasmic growth

exponentially as a function of cytoplasmic volume [13] during the G1 phase for 7.5 hours,

while the subcellular events in the S-G2 phases are not explicitly represented. New

daughters have a phenotype as determined by Figure 6.1 with a stochastic chance the

mitosis event may result in symmetric division (two daughters the same phenotype as the

mother) or asymmetric division (one daughter is the same phenotype as the mother, while

the other takes a more differentiated phenotype). We note that we assume all mothers of a

cancer phenotype retain their progenitor ability as a result of the cancer mutation, and thus

one daughter in a mitosis event will always retain the mother’s progenitor (or CSC)

phenotype. Furthermore, cancerous phenotypes are only minimally limited in proliferation

potential, and may undergo numerous mitosis cycles, although agents are limited by
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molecular signaling and cell cycle time restrictions, and may proliferate only when

molecular thresholds are satisfied and the last mitosis cycle (16 hours) is complete.

ii. Continuum Scale

Within the model, several key molecular profiles are represented numerically:

oxygen, estrogen, AREG, and FGF molecular profiles are all described as continuums, and

are allowed to move freely through the computational domain according to Fick’s law of

diffusion. Continuum profiles are solved for each time step numerically on a three-

dimensional tetragonal mesh using the finite element method (FEM). Oxygen and estrogen

Figure 6.1: Computational domain; a section of mature mammary duct with
myoepithelial, luminal, and luminal duct cavity regions. Upon an EMT cancer initiation
event, a CSC niche is seeded in the luminal layer (shown in white) Cell proliferation
hierarchy and signaling pathways are modeled as shown. CSCs may proliferate into the
luminal niche, contributing to the DCIS population, as both stem and progenitor
phenotypes. Progenitors may give rise to progenitive or differentiated daughters.
Estrogen, AREG, and FGF signaling pathways are as shown.
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are taken to be delivered from the blood supply surrounding the duct (assumed to be a large

reservoir relative to concentrations that enter the duct), and are thus implemented

numerically as constant Dirichlet boundary conditions on the outer boundary of the duct

myoepithelial region.  AREG is produced internally in the duct by ER+ cells, and is free to

diffuse throughout the duct and out into the surrounding stroma numerically through the

implementation of far field homogenous Neumann boundary conditions.  Epithelial to

stromal signaling downstream from AREG (through the FGF7/2-FGFR2b/c pathway [9])

is introduced onto the outer duct boundary as a Dirichlet boundary condition through a

time-dependent function of the AREG concentration exiting the duct boundary. We assume

a 1:1 relationships between AREG entering the stroma and FGF entering the gland from

the stroma; to this end, we implement the boundary condition for FGF entering the gland

by reading the values of the AREG solution at each boundary node for each time step and

using the same values as Dirichlet values at each boundary node in the corresponding FGF

solution time step. Continuum solutions are advanced using finer time steps than the

discrete ABM component for increased solution precision and stability.

iii. Hybrid Modeling Method

In the model, explicit linking between discrete and continuum modeling

components results in a hybrid, multiscale model [14].  At the beginning of each ABM

time step, agents determine the local concentration of all molecules included in the model

from the continuum solutions, as a linear tetrahedral interpolation from the values at the

nodes nearest the agent to the agent center of mass. Agents may modify the continuum

molecular profile solutions bidirectionally through either uptake or secretion of the
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respective molecules, implemented numerically as Dirac delta functions imposed on the

nearest FEM node to the agent’s center of mass (as determined through Voronoi

tessellation). Estrogen signaling to ER+ epithelial cells upregulates AREG production in

these agents, which diffuses out of the duct and signals to the surrounding stroma,

upregulating stromal FGF secretion back into the duct. Due to lack of literature supported

concentration quantification for estrogen, AREG, and FGF’s within the mammary gland,

we implement these values as normalized quantities. All simulations and results presented

were run on the Texas Advanced Computing Center (TACC) Lonestar 5 machine at the

University of Texas at Austin [15].

In the model, DCIS is initiated as an EMT event in one or more adjacent luminal

epithelial stem cells within the inner luminal layer of the mature duct, resulting in a cancer

stem cell (CSC) niche. We implement the EMT phenotypic change through loss of

quiescence and a permanent commitment to a proliferative, cancer stem cell phenotype.

Subsequent to EMT transition, CSCs may place cancer phenotype daughters (according to

the cell hierarch shown in Figure 6.1) into the lumen, initiating DCIS. Subsequent to DCIS

initiation, proliferators in the DCIS population will also place their daughters into the

luminal cavity, which are assigned a phenotype stochastically according to the

differentiation pathway shown in Figure 6.1. Invasion of the luminal cavity by DCIS is

driven by proliferation events and subsequent cell growth. Agent proliferation and the

resulting agent distribution is restricted to the duct cavity, but otherwise unregulated, in

order to simulate the unregulated growth observed in cancer; thus agents are allowed to

invade the duct cavity in a purely stochastic fashion. Agents within the outer myoepithelial

layer do not contribute to DCIS, but do contribute to bidirectional continuum profile
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modifications, and thus are included in the model for sake of completeness and to increase

accuracy and model predictive power.

Figure 6.2: A section of simulated mature mammary gland duct: diameter, 50µm;
length, 500µm. A) DCIS is initialized in the luminal region in the form of a cancer stem
cell niche (5 CSCs), shown in white. B) Zoomed in view of panel A, shown from the
inside of the duct. CSC niches can be seen in the luminal wall in white, with the initial
stages of DCIS (after 1 simulated cell cycle of invasive growth) invasion seen invading
the ductal cavity (purple). C,D) DCIS growth after 4 cell cycles; cell growth has
expanded across the duct diameter and is starting to invade the duct axially. E,F) DCIS
growth after 6 and 8.5 cell cycles of DCIS growth, respectively; DCIS invades the duct
axially as cancer cell population increases.
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IV. Results and Discussion

Initial model validation was performed through two experiments: 1) a study varying

the number of CSCs initially seeded in the CSC niche, and 2) perturbation of the sensitivity

of the ER+ DCIS population to proliferation upregulation through estrogen signaling. An

example of CSC seeding and DCIS invasion in the model is show in Figure 6.2. In the

case of estrogen threshold sensitivity, cells with low signaling thresholds are more sensitive

to estrogen signaling, and correspond to an ER+ DCIS phenotype, while cells with high

Figure 6.3: Total DCIS cell count in the duct cavity over time. A) CSC niche size
variation, 1-9 CSCs seeded in the luminal CSC niche at time t=0. Greater numbers of
CSCs in the niche result in more DCIS daughters per cell cycle and increased total cells
in the niche. B) Cell proliferation with the ER+ phenotype limited by estrogen
threshold; higher thresholds result in decreased proliferation, while low threshold so
not show noticeable proliferation decrease. In the estrogen threshold limited case, the
DCIS population is still increased by the ER- population and limited ER+ proliferation.
One time step = 30 minutes.
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thresholds are less sensitive to estrogen, and correspond to a more ER- phenotype.  DCIS

invasion was quantified as per the number of DCIS cells in the duct and length of DCIS

axial invasion (Figures 6.3, 6.4).

Figure 6.4: DCIS axial invasion extent. The CSC niche is constrained to roughly the
center of the duct (but allowed to initiate stochastically within this region), indicated by
the dotted lines. The location of the first DCIS cell to invade the duct cavity is shown
by colored dots, with bars showing the total ductal invasion length  ± this location (y
axis, as determined by the center of mass of the DCIS agent furthest from the initial
DCIS invasion) after 272 time steps of simulated DCIS progression (8.5 simulated
days). A) Duct invasion as a function of CSC niche size; B) duct invasion as limited by
estrogen threshold. Numbers below bars indicate exact extent of DCIS invasion (µm).
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In the CSC seed perturbation study, increased numbers of CSCs were associated

with higher numbers of DCIS cells in the duct, increased ductal invasion, and increased

DCIS cell density in the duct (density data not shown). Initial proliferation events were

found to adhere to the mature duct luminal layer (Figure 6.2b) due to cell-cell adhesive

forces, resulting in initial ductal invasion proceeding axially along the luminal wall, but

with low cell density when considered across the entire duct radius. Subsequent

proliferation events resulted in DCIS cells expanding across the duct radius in addition to

growth in the axial direction, filling the entire duct radius and increasing the axial invasion

rate due to the increased DCIS progenitor population.  Increased cell proliferation resulted

in increased DCIS cell density in the duct, which we define as the volume of cylindrical

duct cavity which fully encases the entire DCIS population (e.g. bars in Figure 6.4),

defined by the total volume of the cells in that cylindrical volume (calculated exactly for

each time step from the know radius of each agent). We note that, due to the spherical

representation of agents and the empty spaces between agents, DCIS cell density may never

reach 100% of the duct volume; as limited by sphere packing rules.

Estrogen threshold sensitivity was shown to have a notable effect on cell

populations, as ER+ cells restricted by a high estrogen threshold were unable to proliferate,

significantly reducing the total DCIS cell population. However, because we did not place

any signaling threshold restrictions on the ER- population (that is, the cells that are

proliferation dependent on downstream FGF signaling), this ER- population was able to

proliferate freely, and thus cell proliferation was not seen to halt completely even when the

ER+ population was severely limited in proliferation ability. We also observe that the DCIS

population towards the duct center was most affected by this limitation; because estrogen
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enters the duct from the outer boundary, the estrogen concentration was lowest along the

duct axis, thus allowing some ER+ proliferation in the proliferation-limited high threshold

case along the outer edge of the duct cavity (data not shown).

In both experiments, the same effects of reduced cell proliferation due to a high

estrogen signaling threshold or due to a reduced CSC population were manifested

similarly: reduced proliferation lead to lower axial invasion rates and reduced DCIS cell

density. In our next work, we will study the impact of the AREG-FGF signaling pathways

on DCIS progression, as well as conduct studies in larger diameter ducts to study the effects

of oxygen-restriction induced hypoxia, necrosis, and cell lysis and calcification on ductal

invasive rates, surgical margins between calcified regions (as seen in mammography) and

the viable edge of the DCIS, as well studies on how cell-cell physics and calcification

influence the development of the four DCIS architectures.
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CHAPTER 7

A Multiscale, Agent-Based Model of Ductal Carcinoma in Situ

Joseph D. Butner, Vittorio Cristini, and Zhihui Wang

I. Abstract

Ductal Carcinoma in Situ (DCIS) is the most common noninvasive breast

cancer, and is characterized by atypical epithelial cell invasion into the mammary

gland duct cavity. In order to gain a detailed understanding of the cell-scale

population dynamics, phenotypic distributions, and the associated interplay of

important molecular signaling pathways are involved in DCIS invasion, we have

implemented a multiscale agent-based model of the early stages of disease

development. We find that duct invasion rates occur in two distinct regimes,

characterized by an early exponential population expansion, followed by long-term

steady linear region of population expansion and duct invasion rate. Our results

showed that in both regimes, DCIS invasion is influenced most strongly by molecular

signaling thresholds and the effects of quiescence induced by cell density within the

DCIS population. Furthermore, we show evidence that a complex interplay between

phenotypic diversity may provide a tumor adaption mechanism to overcome

proliferation limiting conditions, allowing for dynamic phenotypic populations shift

in response to variation in molecular signaling intensity. This model serves as a useful

tool to study the cell-scale dynamics involved in DCIS initiation and ductal invasion,

and may provide insights into promising areas of future experimental research.
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II. Introduction

Breast cancer was the most prevalently diagnosed form of cancer in the United

States in 2013, with roughly 233,000 new cases diagnosed that year alone [1]. This

translates to roughly 12% of women experiencing a positive diagnosis within their lifetime.

Carcinomas in situ constitute roughly 20% of all cancers of the breast [2], with the majority

(~83%) occurring within the mammary gland duct, known as ductal carcinoma in situ

(DCIS). DCIS is a cancer of the luminal epithelial cells, and is characterized by loss of

heterogeneity of the luminal cells composing the inner layer of the mammary gland duct,

resulting in dysregulated proliferation into the duct cavity. Epithelial cancers are the most

common type of human cancers, comprising as many as 90% of all cancer diagnoses [3],

making the pursuit of a better understanding of the underlying developmental mechanisms

within this cancer subset of utmost importance.

DCIS is hypothesized to develop through a multi-step process, through the

initiation of hyperplasia, transition to atypical hyperplasia, and ultimately into ducal

carcinoma (we note that we lump these together into one category here, and simply refer

to all stages collectively as DCIS) [4]. By definition, DCIS is a stage zero pre-invasive

cancer (as it remains contained within the duct despite transition to an unregulated cancer

phenotype), and has been associated with increased risk of invasive or recurring breast

cancer, although the causal link between the two remains elusive [2]. In order to mitigate

this risk, DCIS is usually treated with lumpectomy, often followed by localized radiation

treatment. Successful surgical resection of the complete tumor while minimizing patient

impact can only be accomplished with clinical identification of accurate and precise

surgical margins – a challenging prospect, dependent on thorough understanding of disease
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progression and the link between diagnostic imaging (e.g. mammography) and the full

extent of disease invasion. In this work, we present a hybrid, multiscale, three-dimensional

model of DCIS, which incorporates a cellular phenotypic hierarchy, endocrine and

paracrine signaling, and also includes mathematical representation of other factors

involved in the DCIS disease state (including signaling pathway disruption, cell-cell

interactions and their effect on disease architecture, and hypoxia, necrosis, and post-

necrotic cell lysis), in order to help gain a more complete understanding on these clinically

relevant parameters.

The mammary gland is a highly branched ductal structure, originating at the nipple,

branching out and away from the nipple through the extent of the fat pad, and terminated

at the opposite ends by lobules. The duct is a bilayered structure, consisting of an outer

myoepithelial layer and an inner luminal layer (see Figure 7.1). Both cell populations are

maintained by stem cell niches: small subpopulations within the gland of bipotent stem-

like epithelial cells [5, 6]. The mammary gland exists only as a rudimentary placode derived

structure at birth, and develops primarily during puberty in response to pubertal

upregulation of endocrine estrogen signaling. This initiates a complex downstream

signaling cascade within the gland, that functions in part by estrogen-induced upregulation

of amphiregulin (AREG) production, signaling to downstream phenotypes through an

epithelial to stromal paracrine mechanism; in part, this in accomplished through an AREG

induced increase in FGF2/7 production in the stroma [7, 8].

Within the mammary gland, epithelial cells are phenotypically distinct based on the

presence or lack of estrogen receptor α (here, we refer to the phenotype which expresses

the estrogen receptor as estrogen receptor positive: ER+) or fibroblast growth factor
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receptor (FGFR), and also based on stem, proliferative, or terminally differentiated

phenotype. This results in distinct niches within the signaling pathway, where cells that

express ER do not express FGF, and vice versa. Upstream estrogen signals to ER+ cells

and results in upregulation of AREG production in these cells, followed by an AREG to

stroma to epithelial FGF signaling cascade, ultimately signaling to the estrogen receptor α

negative (ER−)/FGF receptor positive (FGFR+) phenotype. Estrogen and FGF are of

special importance, as they are shown to induce proliferation within the associated

phenotype, both for pubertal development and gland maintenance.

AREG exists as a membrane-bound protein in ER+ mammary epithelial cells, and

is cleaved into the extracellular space by ADAM17, subsequently signaling to EGFR in the

stroma [7-9]. This results in an upregulation of stromal fibroblast growth factor (FGF)

production (specific to mammary gland development, at least FGF2 and FGF7 (pubertal)

and FGF10 (embryonic) [10]), which reenters the mammary gland epithelium from the

stroma, signaling to its receptor FGFR2B (and its isoforms, i.e. IIIc for FGF2 and IIIb for

FGF7) [11-13]. This is an important factor in mammary epithelial cell proliferation within

the pubertal terminal end bud, as the AREG-FGF pathway has been shown to induce the

formation of normal mammary gland architectures in mammary organoid models (and

indeed both must be present for pubertal ductal elongation) [13, 14], while pathway

inhibition has been shown to hinder pubertal mammary epithelial cell proliferation in

FGFR2B mosaic inactivated mice [11]. This pathway persists within mammary gland

subsequent to pubertal development, and is involved in mature gland maintenance (and,

when broken, may contribute to a breast cancer state). Although not the complete signaling

pathway present in the mammary epithelium, this important cascade is critical in inducing
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proliferation in the phenotypes not directly stimulated by the estrogen-ER pathway, and is

the focus of the molecular cell-cell signaling portion of this study. The cell population in

the mature mammary gland ducts becomes largely differentiated subsequent to pubertal

development, but retains these distinct phenotype populations, including limited niches of

stem/proliferative phenotypes (reported to be ~5% total (or 9% for nulliparous) in the

murine gland) [15]. The molecular mechanisms of cell proliferation upregulation (and the

associated membrane-bound receptors) are of particular interest in DCIS, as these are often

found in excess in the DCIS population.

Cancers of the breast are classified by the presence of absence of three main surface

expressed hormone receptors: estrogen receptor (ER), progesterone receptor (PR), and

human epidermal growth factor receptor 2 (HER2), as these have been shown to be most

associated with cell proliferation in breast cancer. Breast cancers may be positive for one

or more of these, or even negative for all three (triple-negative). It has been reported that

as many as 75% of DCIS cases are ERα+ (with fewer incidences of PR+ and HER2+

detected) [16], and the ER+ phenotype is associated with greater incidences of transition

from DCIS to an invasive phenotype [17]; indeed as many as 70% of all breast cancers are

reported as ER+ [18]. Estrogen receptor α is of particular interest in disease initiation, as

receptor loss of function has been shown to be associated with transition to a DCIS state

[19], which may result from an epithelial to mesenchymal transition initiation event (EMT)

[9]. DCIS is also classified histologically, based both on cytological features (grade,

representative of aggressiveness of DCIS cell proliferation and invasiveness; higher grades

are reflective of increased proliferation and invasion) and cellular architecture (cell

distribution and density within the duct). The most aggressive phenotype is comedo-type
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[20], indicated by aggressive cell proliferation and ductal invasion, axial necrosis, and

Figure 7.1: Computational domain, cell phenotype hierarchy, and signaling
pathways. A) The mature mammary gland duct is composed of an outer myoepithelial
layer and an inner liminal layer, both surrounding the duct cavity. At time t=0, we
initiate an EMT transition to a cancer stem cell (CSC) phenotype within the luminal
population, initiating the onset of DCIS. B) Cell hierarchies and signaling pathways
are as shown in an expanded view of the duct from A. Cancer stem cells in the liminal
layer may proliferate symmetrically, with one daughter remaining in the luminal
region to maintain the cell population, and the other daughter placed into the duct
cavity. Stem cells may also divide asymmetrically, giving rise to one stem (red) and
one progenitor (darker purple) daughter. Cancer stem cells are allowed to proliferate
indefinitely, while progenitors may undergo a finite number of proliferations, at which
point they become terminally differentiated (light purple). Cell signaling is as shown,
with estrogen from the bloodstream signaling to the ER+ population and upregulating
proliferation. These cells are stimulated to produce AREG, which leaves through the
duct boundary and into the stroma, upregulating production of FGF, which reenters
the duct, binding to and upregulating proliferation in the ER− phenotype. C)
Quiescent, necrotic, and calcified agent color coding.
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subsequent microcalcifications (small accumulations of hydroxyapatite) along the duct

axis. Other DCIS architecture types are solid (duct completely filled), cribriform (small

holes are seen in DCIS histology), and papillary (characterized by finger-like protrusions

within the duct). These architectures are not autonomous, with multiple architectures often

found within a single incident of DCIS [2].

In order to elucidate how disruption of the signaling pathways, cell-cell physics,

and cellular phenotypic types and hierarchies involved in normal mammary gland

development may contribute to DCIS, we implemented a hybrid, multiscale agent-based

model (ABM) [21-23] of DCIS. Within the model, cells are represented as unique, discrete

entities (agents), while molecular signaling profiles and molecular movement are

represented as continuums through a mathematical description using partial differential

equations (PDEs, see Continuum Methods below) which are solved numerically for each

time step. Within the agent-based model, we implement a cellular phenotypic hierarchy as

shown in Figure 7.1B. Agents are implemented in a three-dimensional, lattice free system,

where all agent interaction and movement is determined exclusively based on cell-cell and

molecular level physics. Continuum and discrete scales are explicitly linked

mathematically, and feedback between the two scales is explicitly computed at each time

step in the simulation. At each time step, agents probe the continuum solutions for

information about the molecular concentrations within their microenvironment, and agents

modify these profiles based on cellular phenotype and their associated molecular

production or consumption. In this work, we use the terms “consumption” to describe any

molecular concentrations which are reduced by cell behavior, (e.g. oxygen uptake and

metabolism or the binding of signaling molecules to membrane-bound receptors), while
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“production” refers to all cell behaviors which increase the concentration of the molecule

of interest (for example, cells may produce proteins through RNA translation mechanisms,

or they may release already-translated proteins, such as ADAM17 mediated cleavage of

preexisting membrane-bound AREG). Agents are bound by rules which are coded to

represent literature-supported behaviors, including signaling pathways, receptor

expression and overexpression, cell cycle times and limitation of maximum mitosis cycles

for proliferative phenotypes, proliferation behaviors, and growth rates and patterns, as well

as cancer behaviors such as ductal invasion, phenotypic mutations, and the associated

disruptions of cell health often seen accompanying these disruptions, such as increased

oxygen consumption within the cancer population and oxygen depletion induced cell

hypoxia, necrosis, and lysis.

The approach of studying DCIS through mathematical modeling precedes this

work, and indeed inspired several aspects of our model design. Agent-based methods have

shown good promise in elucidating the mechanisms of cell-scale factors and behaviors that

influence DCIS invasion, such as the effects of cell proliferation and apoptosis [24],

phenotypic hierarchies [25], and even treatment [26] on DCIS. Continuum approaches have

shed further light into the contribution of proliferation and apoptosis indices on total tumor

size [27], as well as other factors in DCIS growth tendencies [28]. Increasingly, these two

methods (discrete and continuum) have been combined together to form hybrid models,

with discrete representations of the cell scale and continuum representations of the

molecular scale, in order to generate a more complete picture of the complex underlying

biological system. This is an important step forward in modeling methodology, as

biological systems are inherently complex, with dynamic links between and feedback
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systems across many spatiotemporal scales, thus justifying the increased computational

burden mandated by these increasingly complex hybrid modeling methods. This hybrid

approach has been successfully implemented in the study of DCIS. Notably, Paul Macklin

implemented a two-dimensional DCIS model, complete with hybridized discrete and

continuum scales (including explicit cell-cell interaction physics and molecular diffusion

within the gland), which was able to successfully predict DCIS ductal invasion rates, cell

density, and transition to hypoxic and necrotic states (and the resulting viable rim

thickness), as validated with patient data [29, 30]. Hybrid models of DCIS have also shed

insights into the effects of contact inhibition, hypoxia and necrosis, and acidosis on DCIS

architecture [31], and the selective influence of these and other factors on the development

and evolution of the DCIS phenotype [32].

In the work presented here, we seek to expand upon previous modeling efforts in

order to further elucidate the details of DCIS invasion. By inclusion of the

estrogenAREGFGF signaling pathway, we were able to examine how phenotypic

transitions within the DCIS cell population influenced DCIS invasion, including the effects

on phenotypic distributions and duct invasion rates as limited by proliferation-dependent

molecular signaling and the effects of cell density induced quiescence. At DCIS initiation

time t=0, the only potential source of AREG production (and its initiation of downstream

epithelial cell proliferation) is the ER− population within the luminal layer of the mature

gland; this necessitates inclusion of the cell population within the mature gland into the

model. This layer also affects estrogen and oxygen concentrations within the duct (as these

molecules are consumed or bound by the mature duct cells), as well as influencing the

AREGFGF epithelial to stromal signaling pathway, as both molecules most cross the
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mature duct cell layers as a fundamental part of their signaling mechanisms, and their

concentrations may be dynamically influenced or changed by the appropriate phenotype as

they transverse these layers. Without inclusion of the mature duct cell layers in the model,

we expect the model to overestimate the oxygen concentration in the duct (thus introducing

an avoidable source of error to the prediction of hypoxic conditions), as well as

experiencing similar sources of error within the molecular signaling pathways, such as

notably reduced AREG concentrations, which could artificially impede proliferation within

the ER− cancer phenotype. Reasonable accuracy in representation of these factors is

paramount in studying their effects in DCIS; as such, we attempt to implement a more

complete picture of the mammary gland environment surrounding the DCIS population

through inclusion of the mature duct layers, in order to better obtain a more complete

description of the complicated interplay of molecular- and cell-scale dynamics in DCIS

disease progression.

III. Methods

i. Continuum Methods

Molecular signaling is represented as a continuum, described mathematically using

a Fick’s law description of the reaction-diffusion equation, as described in Equation 7.1,= ∇ + ( ), (7.1)

and based on some of our previous modeling work [33]. This partial differential equation

describes the time-dependent molecular concentration (u) within the computational domain

(e.g. the simulated duct), as dependent on the diffusion constant (D), and as modified by a

reaction term (R), which accounts for both molecular consumption/production U(u), as



www.manaraa.com

125

well as molecular degradation L(u); i.e. R(u) = U(u) – L(u). The distribution profile of each

molecule of interest is described individually, and a unique solution is obtained for each

molecule at each continuum time step. Time steps for continuum solutions are implemented

to be shorter than ABM time steps; thus FEM solution steps are subdivided into even

substeps between the ABM time steps to improve solution stability and accuracy

(continuum solutions were incremented at 1/30th the ABM time step in results presented

here). FEM solutions are obtained on a three-dimensional tetragonal mesh (generated with

Figure 7.2: Examples of continuum (A-C) and discrete (D,E) model components.
Continuum solutions from FEM are shown for A) oxygen, B) AREG, and C) FGF (an
example of an estrogen solution is not shown). Oxygen enters into the duct from the
boundary under Dirichlet conditions; regions shown in blue where DCIS has reduced
the local oxygen conditions. B, C) AREG is produced in the duct by ER+ cells (red
areas) and diffuses throughout the domain and out of the duct radial boundary. The FGF
boundary conditions is derived from the AREG solution (the FGF solution shown in C
is the result of the epithelial to stromal signaling mechanism from the AREG solution
shown in B). D) Internal view of DCIS five days after the EMT DCIS initiation event;
the CSC niche is shown in white. E) AQn example view of DCIS 11 days after the EMT
event; the mature duct cells and healthy DCIS progenitors are shown as transparent so
the stem phenotype, as well as hypoxia and calcification internal to the DCIS may be
seen clearly. A-C, 100µm diameter duct; D-E, 200µm diameter duct.
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Trelis meshing software, formerly Cubit, see Figure 7.2A) using Sundance [34], a high-

level finite element method library included as part of Trilinos, a numerical methods

package developed by Sandia National Laboratory (examples are shown in Figure 7.2A-

C).

Boundary conditions are defined to best describe the biological conditions for each

molecule of interest. Blood supply to the mammary gland is delivered through a system of

surrounding capillaries [35], which we assume to be located directly on the outer duct

surface and contain a rapidly replenished blood supply (through circulation) at all times,

resulting in a constant concentration of molecules of interest (e.g. oxygen, estrogen)

delivered to the duct through the circulatory system at the boundary. To this end, in our

model, estrogen and oxygen enter into the system numerically as constant Dirichlet

boundary conditions (BCs) for each molecule on the outer surface of the duct (the outer

radius, but excluding the ends where we truncate the computational domain into a “duct

section”. We apply a constant value um (the blood concentration of molecule m) on all

boundary nodes xboundary), as per= , = (7.2)

and these molecules may diffuse into the domain freely (but according to appropriate

diffusion constants) according to Equation 7.1. These molecules may be removed by agents

from the local concentration (R(u)) due to molecular consumption (oxygen) or binding to

the appropriate receptor (estrogen to ER+ agents, and FGF to ER− agents). This reduction

in local molecular concentrations is combined with a molecular degradation term (L(u)),

which accounts for a summation of potential molecular sinks, including molecules lost to

agent necrosis/lysis/apoptosis, and the presumed uptake of molecules by other cells within
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the mammary duct but not explicitly modeled in the ABM, among other biological factors.

These molecular losses are taken to be small, that is |L(u)| << |R(U)|, but are included in

the model for sake of completeness. Specifically, the total change in local molecular

concentration u at location x is calculated as, = , − = ± ∑ − | − | − , (3)

where ri and ai are the radius and center of mass coordinates of the agent, respectively, H(x)

is the Heavyside function, and λi is the per-volume or per-surface area consumption or

production value for the appropriate molecule (positive sign is production, and negative

sign is uptake/consumption). We have made the assumption that all cells of the same

phenotype (i.e. cancer vs. healthy, or as per cell receptor status, e.g. ER+/−) have the same

λ values (and noting that some values are per-surface area or per-volume, such as

membrane bound receptors for signaling (a function of cell surface area) vs. oxygen

consumption (taken instead to be a function of cytoplasmic volume).

Within discretized numerical approximations of mathematical functions, the

solution is only known exactly at the nodes, and as such, these discrete modifications to

the continuum solution must also be applied at the nodes (for more details, see

Hybridization of Models section, below). The magnitudes of local molecular

concentrations are computed as the average values from all agents with their center of mass

ai closest to each node (as determined through Voronoi tessellation, a method of

subdividing the domain into regions which enclose the volume closest to each node),

normalized into per-volume or per-surface area values, and applied to the appropriate node

of interest numerically through application of a Dirac delta function, defined as

= ∑ d
, (4)



www.manaraa.com

128

where n is the number of agents in the Voronoi cell. To simplify calculations, we take the

total volume (and thus the total contribution to molecular molecule concentration profiles)

of the agent to be within the Voronoi cell containing its center of mass; thus the total values

for each cell are implemented into the continuum solution entirely at the nearest node. By

subdividing the mesh into elements of similar length to the mature agent diameter (noting

that when a cell divides, its daughters have reduced diameter, and both may at that time

have increased likelihood of sharing the same nearest node until they grow in the G2

phase), we have attempted to ensure that only a small number of agents are associated with

each node, thus maintaining an acceptable degree of precision within this approximation.

AREG is produced by the ER− phenotype within the myoepithelial and luminal

duct layers, as well as within the ER− DCIS population, and we take these to be the only

AREG source in the model, e.g. AREG is assumed not to enter from any sources in the

region surrounding the duct, and the concentration of free AREG outside the duct is

minimal (as AREG that enters this region is assumed to be rapidly bound to EGFR in the

stroma). To this end, we assume that AREG is free to diffuse out of the domain across the

outer radial boundary under the same conditions that it diffuses though the domain. This is

accomplished through the implementation of homogenous Neumann boundary conditions,

with molecular concentration attenuating toward equilibrium at the far-field. Biologically,

the AREG that leaves the duct signals to EGFR in the stroma, stimulating an epithelial to

stromal cascade which results in FGF reentering the duct. We assume a 1:1 relationship

between the normalized concentration (C) of AREG that leave the duct and the

corresponding normalized concentration of downstream FGF that reenters. Numerically,

we implement this as a time-dependent Dirichlet boundary condition, defined for each time
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step (t) as a function of the per-node values of the AREG solution from the previous time

step (t-1) as = , 	 ,			( = 1… ) (5)

for each node ni. At each time step, we store the value for the AREG solution at each

boundary node, and then use these values for the Dirichlet boundary condition for the

subsequent time step in the downstream FGF solution. In this way, a direct downstream

epithelial to stromal signaling mechanism is implemented (but with a time delay of 1 ABM

step, approximating the time delay for the occurrence of the signaling cascade steps which

occur in the stroma, but are not explicitly modeled here), providing a reasonable

approximation of the epithelial to stromal signaling pathway. An example of FEM solutions

for the AREGFGF epithelial to stromal pathway is shown in Figure 7.2B, C.

We have strived to, whenever possible, implement biologically relevant, literature

supported values in these equations. Movement and consumption of oxygen at the cell level

is well characterized, with oxygen diffusion constants reported in a wide range, of between

4x10-8 to 1.1x10-4 cm2/s [36]; accordingly, we take a somewhat median value of D =

2.57x10-6 cm2/s as reported in [37]. Oxygen consumption of a single cell is in the 10-18 –

10-16 Mol/(cell*s) range; these are reported in the 2.5-45 x 10-18 Mol/(cell*s) range for

healthy cells (depending on cell states, with lower consumption for mature/senescent cells

and higher consumption for proliferating cells), with further increased consumption for

cancer cells [38]. Specifically, oxygen consumption rates have been measured (in cell

culture) up to 150 x 10-18 Mol/(cell*s) for EMTGIRo murine mammary tumor cells in

exponential growth (and lower in the  plateau phase, at 100 x 10-18 Mol/(cell*s)), and up to

260 x 10-18 Mol/(cell*s) for the MCF-7 breast cancer cell line [38] (estimated from Table
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2 and Figure 2 in [38], and using a standard mammary cell diameter of 10µm). We have

used oxygen values with units of 10-18 Mol (e.g. atto-Mol) to be consistent with the units

reported for per-cell oxygen consumption, and to maximize precision in our numerical

solvers. Specifically, our FEM solver Sundance uses std::double variables (which give a

maximum 16 reliable significant digits) to solve the FEM. This means that a value of 10-18

may be rounded to zero (depending on compiler implementation, etc.), and is not reliable

for units in Mol; thus we avoid this possibility while increasing solution precision though

use of atto-Mol.

For boundary conditions, blood oxygen concentrations is taken to be 100mmHg

[39], while female pubertal blood estrogen concentrations are lower than oxygen

concentrations (median of 70.3 pMol/liter [40]; and lower still post-menopause, when most

DCIS occurs). Per-cell uptake rates for estrogen, as well as quantification of AREG and

FGF local concentrations, were not found in the literature; accordingly, we have instead

opted to use normalized concentrations for these values, with uptake/binding/secretion

rates calibrated phenomenologically to accurately reproduce biologically appropriate

behaviors, as we also did in a model of the developing pubertal mammary gland [33].

Likewise, diffusion constants for these molecules were estimated using a combination of

known diffusion coefficients for similar molecules, linearly interpolated in order to

estimate their diffusion constants, as based on relative molecular weights.

ii. Discrete Methods

Cells in the mature mammary gland and the DCIS population are represented

discretely through implementation of an agent-based model. Each cell agent is unique, with
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its own geographical coordinates, phenotype, receptor status, size, cell generation number,

and cell state. Agents proliferate as instructed through molecular signaling, and as allowed

by phenotype, neighbor density, and cell cycle time restrictions. Cells may only proliferate

when molecular signaling thresholds are satisfied, when they are not induced into

quiescence due to agent density restrictions, and only after a full cell cycle has occurred

after their last mitosis event, taken to be >= 16 hours (see Table 7.1). For example, a new

daughter cell of the ER+ phenotype must complete interphase (some parts we explicitly

Figure 7.3: Agent decision flowchart. Agent decisions are made according to rules
shown for each time step of the discrete model. Blue and red arrows indicate transition
pathways between top and bottom boxes (shown without complete arrows connecting
the two regions for clarity).
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model, such as cell growth, and others we do not, such as subcellular processes, as they are

not the focus of this study), before it is eligible to proliferate again. After the completion

of interphase, our example cell (now mature) queries its local environment to determine

the estrogen concentration at its location and to ensure oxygen levels are sufficient to avoid

hypoxia, as well as to determine the local cell density. If the molecular concentrations are

above a determined threshold, and local cell density is below the density threshold, then

the agent chooses a random orientation for mitosis (e.g. mitotic spindle and cleave furrow

orientation). When all conditions for the mitosis event are satisfied, the cell divides,

splitting its cytoplasmic volume and plasma membrane contents evenly between its

daughters. Likewise, similar conditions must be met for the other phenotype within the

DCIS population as well, i.e. FGF signaling thresholds for ER− cells. This decision-making

process is described graphically in Figure 7.3.

In order to ensure the simulated DCIS cancer growth remains in stage zero (the

focus of this study), agents are bound to remain within the duct cavity (defined by the

luminal inner layer of the mature duct), and may not metastasize to penetrate the duct.

However, agent movement is not restricted within the duct, and agents may move freely

within the duct as influenced by cell-cell physics, which are solved and updated after all

cell conformational/position change events (i.e. mitosis, movement, growth, lysis-induced

swelling and cell rupture, etc.). Cells may be displaced by events in neighboring agents

(e.g. movement, proliferation, growth), and are infinitely complacent to displacement; thus

growth or proliferation of a cell in the center of the DCIS population has the potential to

cascade displacement throughout the entire DCIS population, even to the leading edge of

the tumor, as determined though solving the system of equations describing the interactions
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between all cells in the physics world. Cells adhere to neighboring cells through application

of cell-cell adhesion forces, and are resistant to displacement due to these forces, which are

implemented mathematically as a combination of forces which adhere the cells together

(applied mathematically as force vectors at the center of mass of each cell along a vector

between their centers of mass), as well as static, kinetic, and rolling friction. Cells may also

deform due to forces applied from surrounding cells, which we represent mathematically

as a loss of energy through a coefficient of restitution (and thus not modeled explicitly as

a change in shape of the plasma membrane). However, because two cells may not occupy

the same space, ultimately cells must be complacent to their neighbors, and thus

displacement forces will always overcome the resistant forces to accommodate this

requirement, although these forces do play a direct role in determining which

displacements will occur.

Cells in the model follow a cell hierarchy as shown in Figure 7.1A. At time t=0,

we allow a small number of cells in the luminal layer of the mature duct to undergo EMT

to a cancer stem cell (CSC) phenotype (shown in white, Figure 7.1A and Figure 7.2D).

Each CSC is seeded to be at a random time within the cell cycle, through implementation

of an internal counter which records the time since the cell’s last mitosis event. This counter

is incremented for each agent each time the ABM time is stepped forward, and the agent

may not proliferate again until the counter value is at least equal to the cell cycle time (16

hours, see Table 7.1), and provided the molecular and cell density thresholds are also

satisfied. Stem cells are taken to have unlimited proliferation potential, and may thus

proliferate an unlimited number of times. Within the simulated cell hierarchy, the luminal
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progenitor phenotype is directly below cancer stem cells in the cell hierarchy, and these

may proliferate over many cycles, as bounded by literature supported values.

Normal mammary epithelial cells have been observed to divide 55-60x in culture,

and even up to more than 250 cycles through immortalization with c-myc or its direct

transcriptional target, hTERT (the human telomerase subunit responsible for catalysis) [41,

42]. Although cancer cells are known to experience a level of immortalization, we choose

to limit DCIS proliferation potentials to the lower end of this spectrum, to <= 50 mitosis

cycles before differentiation. Cells are proliferation restricted by surrounding cell density,

and will become quiescent if the density crosses a certain threshold; however, this

restriction is reversible, and if density of the surrounding cells is reduced due to cell death

or movement, then the cell may again proliferate (much like how cells are known to often

cease population doublings when they become confluent in culture, but may resume mitosis

once the confluent cells are split into a set of new dishes, thus relaxing the effects of

confluent population density). Cells which proliferate the maximum number of cycles will

spontaneously differentiate subsequent to their last mitosis event and become terminally

differentiated. We note that it is possible for the maximum number of proliferation cycles

before differentiation to exceed the time simulated in the model runs presented here; in this

case, the differentiated phenotype is not observed. However, due to limitations in cell

signaling and cell density, progenitors may often become quiescent (shown as orange, with

different shades indicating phenotype), thus having a similar effect on total population

dynamics without undergoing a terminal differentiation.

Aggressive cell proliferation in the absence of a properly developed vasculature (as

often observed in solid tumors) often results in restrictions of oxygen availability, hypoxia,
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and even hypoxia-induced necrosis. Hypoxia is commonly seen in DCIS in ducts over a

certain size; hypoxia-induced necrosis has been reported in up to 94% of ducts of diameter

>360µm, but only 34% of ducts with diameter <360µm, with an average viable rim

thickness of 180µm before hypoxia onset [43]. This is due, in part, to increased oxygen

consumption rates in mammary cancer cells, reported to be 150-260 attoMol/(cell*s) for

EMTGIRo and MCF-7 cell lines, respectively, relative to 2.5-45 attoMol/(cell*s) for

healthy cells (depending on cell type and cell phase, i.e. quiescence vs. mitosis phases)

[38]; this translates into an increase of up to ~100 fold oxygen consumption in cancer cells.

Cancer cells have been reported to enter hypoxia when local oxygen supply drops below

8-10 mmHg [39, 44], and at about 1/3 the normoxia concentration observed in the healthy

tissue [39] (we use the 1/3 normoxia concentration quantifier in the work presented here),

and cells in the model will enter irreversible hypoxia induced necrosis after 12 hours of

continuous hypoxia based on values reported in [45]. Subsequent to necrotic death, cells

enter a lysis phase, swell under lysis conditions until the plasma membrane ruptures after

~6 hours as per [46] (mammalian cells may swell from 1-5x up to at least 10x their original

volume during lysis [47-49], although we use 2x in this work, as seen in previous DCIS

modeling work [30]), resulting in their cytoplasmic contents being released into the luminal

cavity. Leaked cytoplasmic contents may then form microcalcifications (as seen in

mammographic imaging); here we take the calcified volume to be 30% of the volume of

the cell volume at the time of lysis initiation (as cytoplasm is reported to be roughly 70%

water [50]), with a calcification time of 15 days. In the model, hypoxic cells are shown in

grey, and both cytoplasmic spilled from a lysis process and the subsequently calcified

cytoplasmic remains are shown as bright green (for ease of visibility). We note that we
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have made the assumption that, due to mutations resultant in the cancer phenotype,

apoptosis pathways are turned off in the DCIS populations; thus all cell death in the model

is due to this hypoxia and necrosis pathway.

iii. Hybridization of Models

In our model, the continuum and discrete components are explicitly linked

mathematically, resulting in a hybrid model. Information is directly communicated

between the scales at each time step in all simulations, and each scale component is directly

affected by, and directly affects, the other. Agents in the discrete scale receives information

about their microenvironments directly from the continuum scale. Each agent probes its

microenvironment at the beginning of each time step in order to determine the local

concentration of all molecules represented in the continuum scale at its location (for

simplicity, agent location is taken to be its center of mass). Because the solutions of

continuum molecular profiles are only known exactly at the node locations, agents must

interpolate the concentration at their location from the values at its nearest nodes. Each

agent identifies its nearest nodes at each time step (exactly 4 nodes per agen, as continuum

solutions are determined on tetragonal meshes, consisting of the 4 nearest nodes which

encompass the agent’s center of mass), reads the values at each node, and interpolates the

value at its location from these known node coordinates and values using linear barycentric

interpolation (a method where the value at each node is weighted relative to the distance

of each node from the agent location, and each weighted value is then summed to give the

interpolated value). Agents also feedback into the continuum scale through direct

modification of the continuum solutions, based in part on their phenotype (see Figure
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7.1B), as described in detail in the Continuum Methods section. Through explicit linking

of discrete and continuum scales, the model is able to provide detailed information about

interplay between tissue and cell scales, and to give useful insights into the contributions

of molecular factors involved in determining behavior observed at a cellular level, and thus

providing information not available through either discrete or continuum method alone.

IV. Results

We have implemented our DCIS model to simulate the earliest stages of DCIS

invasion in a section of simulated duct. Simulations were performed in three different

diameters of mammary gland duct sections (50, 75, and 100µm luminal cavity radii; i.e.

the thickness of luminal and myoepithelial layers in the mature duct are not included in this

measurement, but rather surround a luminal cavity of this diameter), each represented as a

cylinder of duct 1mm in length axially. At the start of each simulation (t=0), a small number

of cells in the mature luminal layer of the duct undergo an EMT transition into a cancer

stem cell (CSC) phenotype. These CSCs may proliferate indefinitely, placing their

daughters into the luminal cavity, as determined by cell phenotypic hierarchies shown in

Figure 7.1. These and all daughter cells may continue to proliferate, as determined by

mitosis threshold rules (see Table 7.1) and satisfaction of molecular signaling thresholds.

CSCs are initiated at the center of the duct axis (e.g., in a 1,000µm axial length duct section,

they would be placed as close to axial location x = 500µm as possible), with all CSCs in a

contiguous location. For consistency, we seed a standard set of agent locations (though

each non-CSC agent has a stochastically determined phenotype, unique to each simulation)

in the mature duct layers, resulting in EMT transition at the same agent locations for all
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simulations of a certain duct diameter. The DCIS population may invade the duct in both

axial directions simultaneously (e.g. x+, x−) away from this central locations; thus total

ductal invasion is taken to be the summed magnitude of cell invasion bidirectionally from

the CSC niche, as determined by the center of mass of the agent at the most extreme axial

displacement in both directions (e.g. xmin and xmax). At each step, details of each agent

(locations, phenotypes, cell states, etc.) are recorded, and results are detailed in the sections

below.

Model outputs of interest reported here include the extent of DCIS invasion

(measured as described in the previous paragraph), the associated DCIS axial invasion rates

(calculated by linear fitting to the data to total invasion extent at each time point, e.g. =

|xmax,t-xmin,t|, and extrapolated to a mm/year rate, corresponding to invasion units reported

in the literature) and total DCIS cell population, as well as extent of hypoxia and

calcification when appropriate. Furthermore, we have been diligent to correlate and

compare model outputs to values available in the literature, when available. All model

results presented here were obtained from simulations run in equal wall clock times on the

Lonestar 5 supercomputer, located at the Texas Advanced Computing Center (TACC), The

University of Texas at Austin [51].

i. Establishment of Baseline Values

We have strived, to the best of our ability, to obtain literature-supported values for

variables implemented in this work. Commonly, this means selecting a value from the

range of reported values, which we use as a baseline (or constant) value in all results

presented. Other values, such as mammary gland duct diameter, are chosen from a range
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of reported values which may allow us to observe behaviors of interest, while remaining

within a computationally feasible continuum and discrete description. When values are not

available from the literature, or when a quantity of interest remains underdetermined even

with the variables we were able to find in the literature, then we have calibrated the model

phenomenologically to accurately reproduce behaviors we are able to obtain from the

literature. For example, while we do not know a reported value of cell mitosis events per

time, we do know DCIS axial invasion per year. These two values are inherently linked,

and we may calibrate the conditions which influence cell proliferation rate such that it

results in ductal invasion rates which are known. We have tested the effects of perturbations

of one or more baseline value in order to test its effect on the model results, with careful

attention to avoid creating compounding variable situations through perturbations of many

variables in parallel. Unless specifically stated, all variable values were set at the baselines

for all results shown. The calibration of some of these is detailed below, and baseline values

are provided in Table 7.1

ii. The number of EMT-generated Stem Cells in the CSC Niche has Minimal Effect on

DCIS Invasion Rates

In our model, DCIS initiation occurs through a spontaneous EMT event, where one

or more healthy cells in the mature luminal duct layer undergo a transition to a cancerous

stem cell phenotype. In order to gain insights into the effects of the number of cells which

experience this EMT event on DCIS initiation and early stage development, we performed

a set of experiments testing the effects of the number of CSCs initiated at t=0 within a

single CSC niche. In order to avoid the effects of confounding variables within the model,
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we removed the effect of molecular signaling thresholds in this case; that is, we assume

that each progenitor cell is always under favorable signaling conditions for proliferation,

and it may undergo a proliferation event when it has completed the previous cell cycle, as

allowed by cell density restrictions. We assumed that the number of cells undergoing this

transition will be relatively small, and may occur in one or a small cluster of cells, as

lineage tracing studies of the mature mammary gland homeostasis maintenance process

have shown that over time, many contiguous cells may share a common mother and clonal

lineage [5], and thus we assume they may also share a common susceptibility to the EMT

Figure 7.4: Effects of variation in CSC count within the EMT-generated niche on
DCIS invasion. A) An example of simulation output over time (100µm duct, no
thresholds); plots in B-D show the position over time of the DCIS agent with maximum
axial duct invasion extent in both axial directions, taken as the agent’s center of mass.
B-D) Effects of variation within the number of CSC initiated at t=0 in three duct sizes
(B=100µm, C=150µm, D=200µm). Duct axial invasion rates are seen to be relatively
consistent, with only minor effects at early times (e.g. 1 CSC data (red) can be seen to
show slower axial invasion at early times, while 9 CSCs (purple) shows the opposite
effect); however these effects are seen to be overcome when growth enters the linear
region (see Figure 7.5 for more information).
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transition. Under this assumption, we tested the effects of initiation of a CSC phenotype in

1-9 luminal cells (specifically, 1, 3, 5, 7, and 9 CSCs) at t=0 on DCIS population expansion

rates and early duct invasion rates, as shown in Figure 7.4.

By examining the extent of DCIS invasion over time, we discovered that the

number of CSCs initiated in the niche at time t=0 had a negligible influence on the total

DCIS invasion extent and rate of invasion for all three duct sizes tested. Average growth

rates over the time were estimated by linear fitting of data shown in Figure 7.4, and were

found to increase from 11.84 to 11.87mm/year for the 100µm duct, 12.82 to 12.89mm/year

for the 150µm duct, and 10.78 to 11.21mm/year for the 200µm duct (a 0.25%, 0.55%, and

3.99% difference, respectively); demonstrating only minimal influence of cell number

variations in the CSC niche on duct axial invasion rates. Further insights and likely causes

of this observation are provided in the Discussion section, below. Based on the minimal

effect of variations in the number of cells in the initial SCS niche, we expect the number

of CSCs chosen for the remainder of our simulations to impart only a small effect on DCIS

population dynamics after enough simulated time (if at all), and thus chose a median value

of 5 CSCs to serve as the baseline for the rest of the simulations presented here.

iii. Early-stage DCIS Invasion Occurs in Two Distinct Growth Regimes

Examination of the total DCIS cell count over time reveals two distinct regions of

cell proliferation behavior: an early, transient exponential growth period, followed by a

extended linear growth period. This behavior is observed in all duct sizes (see Figure 7.5),

and for all numbers of CSCs seeded in the CSC niche niche (data not shown). The transition

period between these regions is indicated in Figure 7.5 by a set of vertical dashed lines,
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with the exponential region to the left of this region (early times) and the linear growth

regions to the right. The exponential growth region is shorter in smaller duct sizes, with an

exponential growth period of ~4.25 days for the 100µm duct and ~5.9 days for the 200µm

duct. This biphasic pattern of DCIS population increase is observed to be irreversible, and

once a transition from exponential to linear growth occurs, the model will remain in the

linear growth pattern for the rest of the simulation.

Figure 7.5: DCIS cell population expansion occurs over two distinct regimes. At
early times after DCIS initiation, cell population is observed to undergo exponential
growth (left of dashed lines), with population doublings occurring once per cell cycle
(data shown here with no signaling threshold proliferation limiting effects; each test
was performed in duplicate, data from both tests is shown (1 and 2)). Once the cell
population has increased to a population size where cell density proliferation
threshold effects are initiated, the population transitions from an exponential to a
linear growth regime (observed between the dashed lines). Subsequent to this
transition, the population remains in a linear growth pattern (right of dashed lines).
All data shown with 5 CSCs initiated at t=0 and without signaling threshold effects.



www.manaraa.com

143

iv. DCIS Axial Invasion Rates are Consistent over all Duct Sizes Tested

The mammary ductal structure possesses significant variation in duct diameter,

which has been reported to range from tens of microns to several mm [27, 43]. Duct radius

shows significant variation even within a single patient, and this effect is further

exaggerated between healthy and ducts containing intraductal carcinoma. In a study

measuring 1,285 excised human mammary ducts, Mayr et. al. reported a mean diameter of

90µm for the normal duct (520 samples, range 39-314µm), but a statistically significant

increased mean diameter of 314µm (765 samples, range 60-1708µm) in ducts with

intraductal carcinoma [43]. Of the ducts measured, ~97% of healthy ducts and ~30% of

ducts containing intraductal carcinoma were found to be <200µm diameter. This significant

variation in duct diameter between healthy and ducts containing DCIS is due (at least in

part) to a DCIS invasion induced increase in duct diameter, where the duct in mechanically

stretched beyond its initial diameter by the expanding tumor.  We do not represent this

phenomena in our current efforts; instead, we assume that, because we simulate the earliest

stages of DCIS initiation and invasion, the duct does not expand under intraductal pressure

from the DCIS expansion at this early stage of development. Accordingly, we select our

duct sizes to be within this reported range of smaller ducts, and thus have implemented

100-200µm diameter ducts.

To test the influence of duct diameter on the ductal invasion rate of DCIS, we

performed ran simulations (in duplicate) in all three duct diameters tested under baseline

values, but without the effects of simulation thresholding, as shown in Figure 7.6. Because

of the complex interplay between the distribution of cell phenotypes and the associated

upstream (e.g. estrogen) and downstream (e.g. AREG, FGF) signaling, DCIS invasion rates
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under signaling threshold effects may experience significant variation; thus we remove this

effect to eliminate interaction of these variables to better examine only the effects of

variation of the duct diameter. Thus, as in the previous experiment testing effects of CSC

number, we assume molecular signaling threshold are satisfied for all progenitor cells

within the DCIS population. Interestingly, we observed that DCIS axial invasion rates were

small between the different duct diameters, with average ducal invasion rates (as estimated

by linear curve fitting) averaging from 11.23 mm/year for the 200µm duct to 12.95mm/year

for the 150µm duct (and a more centralized rate of 11.91mm/year for the 100µm duct), for

a total observed variation in DCIS axial invasion rate of 15.32% vs. a 100% duct diameter

variation across all duct diameters tested. This relatively small variation of axial invasion

rate relative to the variation in duct diameter is largely due to the effects of cell density in

this case, and is examined more thoroughly in the Discussion section, below.

Figure 7.6: Effect of duct diameter on DCIS axial duct invasion extent over time.
Measured DCIS axial invasion, corresponding to data shown in Figure 7.5. Axial
invasion rate and extent of invasion is observed to be consistent across all duct axis
tested.
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v. Necrosis Acts as a Hypoxia Relief Mechanism

Cells in our model will become hypoxic when their local oxygen concentration

drops below a threshold, and cell that remain hypoxic for more than 6 hours will undergo

necrosis, lysis until plasma membrane rupture, and then leak cytoplasmic contents, which

become calcified after time (for details and values, please see Discrete Methods and Table

7.1). Oxygen enters the duct from the outer boundary, and must pass through the outer

myoepithelial and luminal mature duct layers before entering the duct cavity; oxygen

entering the duct cavity is reduced due to uptake by cells in these layers. Due to the

relationship between duct radius and the Krogh length of oxygen in this tissue (based on

values in Table 7.1, and noting that cancer cells have the greatest influence on Krogh

length, as they consume more oxygen than the surrounding healthy duct), oxygen remains

plentiful in the 100µm and 150µm diameter ducts, and hypoxic conditions were only

observed in the 200µm duct; this is consistent with values reported by Mayr et. al. [43].

In the 200µm duct, hypoxic conditions were observed to follow the leading edge of

the tumor, once tumor thickness has exceeded the Krogh length for oxygen radially.

Because we assume a constant blood oxygen concentration at the duct boundary, the

oxygen threshold at the center of the DCIS mass will remain below the hypoxia threshold

unless local cellular oxygen consumption is reduced. While cells may be displaced out of

this region, more commonly we observed that this is not the case, due to the high density

of cells surrounding this region. Usually, hypoxic conditions were relieved through the

course of hypoxia induced necrosis of agents in the hypoxic region – the death of these

cells reduced the oxygen consumption burden in these regions, allowing oxygen

concentration to increase slightly in these locations in subsequent time steps, and thus
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reducing the slope of the oxygen gradient along the duct radius in these locations; this

effect is shown in Figure 7.7. In this way, necrosis was observed to function as a relief

Figure 7.7: Necrosis acts as a partial relief mechanism for hypoxia. Lowest oxygen
concentrations are observed in the location of necrotic agents in the DCIS population,
following the leading edge of DCIS (red arrow, solid). In regions of calcification,
oxygen concentrations are observed to raise slightly (green arrow, dashed), due to the
relief mechanism of necrosis and calcification through reduction of oxygen
consumption at these locations. Oxygen concentration units: 10-1 , for
consistency with units for per cell oxygen consumption  as provided in [38] (see
Methods for more information). Both images are shown as a cross-section taken
vertically through the duct to show cell and molecular profiles internal to the DCIS
region.
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mechanism for hypoxic conditions, allowing local oxygen concentration to rebound

slightly, ensuring the remaining cancer population is sufficiently oxygenated, as well as

potentially allowing some cells to survive their hypoxia and return to normoxic conditions

due to the local oxygen concentration recovery.

vi. Molecular Signaling Effects

In order to examine the effects of molecular signaling pathways, we tested the

model in the case of both high and low signaling thresholds for both estrogen (upregulates

ER+ cell proliferation) and FGF (upregulates ER− cell proliferation). We define the

molecular signaling threshold as the signaling intensity above which a cell is upregulated

to proliferate; when thresholds are high, the cell must be stimulated by high local molecular

concentration before it experiences upregulation of a mitosis event, while conversely, when

thresholds are low, a cell may be stimulated to undergo a mitosis event under low local

molecular concentration. In order to test the effects of these pathways, we performed a

series of threshold proliferation tests in the 100µm duct. In all tests, estrogen, AREG, and

FGF release/uptake values are at the same value, i.e. ER+ cells bind to estrogen at the same

rate, and release AREG at the same rate, in all tests performed, and likewise all ER− cells

bind to FGF at the same rate. Thus, we perturb the sensitivity of the cells against a standard

signaling intensity in order to simulate a potential phenotypic transition that causes a

deviation in senility to molecular signaling, potentially upregulating proliferation in the

DCIS phenotype.

DCIS axial invasion rates were seen to be sensitive to signaling thresholds, as high

thresholds limit mitosis events, resulting in slower population expansion and fewer DCIS
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cells over time relative to the low threshold case (Figure 7.8 curve 0; this low threshold

case was also used in data presented in Figures 7.4-6). Furthermore, this effect was more

pronounced in the high estrogen threshold case (Figure 7.8 curves 4 and 5), while low

estrogen signaling thresholds show lesser reduction in DCIS axial invasion, even with high

FGF thresholds (Figure 7.8 curve 2). This effect is attributed to the upstream to

downstream effect of the estrogen to FGF epithelial to stromal signaling pathways.

Simulation output from several cases of interest (corresponding to the data shown

in Figure 7.8) is shown in Figure 7.9. An example of a non-threshold limited case is shown

in Figure 7.9A, with a cross-sectional view (cross-section taken vertically along the duct

Figure 7.8: Effects of molecular signaling thresholds on DCIS axial invasion.
Molecular signaling thresholding effects show a significant reduction in cell
proliferation events and associated DCIS Axial invasion, with high thresholds showing
the most effect. Estrogen thresholding is seen to have a more significant effect, as
estrogen upregulates ER+ cell proliferation, which are directly responsible for
increasing AREG and FGF concentrations in the duct above normal background levels
(produced by ER+ cells in the mature duct luminal layer). Case 0 provides a baseline
(i.e. without thresholding effects). All results shown are for a 100µm diameter duct.
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axis) shown to show the phenotypic distribution internally within the DCIS mass. In this

case, it can be seen that the viable rim on the right is completely composed of ER−

phenotype, resulting in a large section of completely ER− agents, while the left side is

Figure 7.9: Example simulation results with signaling effects. A) Baseline example
without signaling limited proliferation. B) Estrogen-limited case; the ER+ viable rim
(red arrows) is seen to advance more slowly than the ER− (right side) viable rim due
to estrogen limited ER+ proliferation. C) FGF limited proliferation; in this case, the
ER− population is completely unable to proliferate at early model times, resulting in
the viable rim being completely composed of ER+ cells, resulting in almost the entire
DCIS population being an ER+ phenotype. D) Mixed viable rim (green arrows) is seen
to overcome the proliferation limited ER+ population (due to high estrogen threshold),
resulting in an ER+ viable rim (blue arrow) and demonstrating a possible adaptation
mechanism to signaling limited cases in the DCIS cancer population. All results shown
in a 100um duct; cases A-C correspond to curves shown in Figure 7.8 (as indicated),
data for D not shown. Time (descending) for each image in each case shown is 4, 6,
8, 10, 12, and 14 days after the EMT initiation event.
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observed to be of mixed phenotype due to the mixed phenotypic distribution within the

viable rim. We emphasize that due to the stochastic nature of the model, this is only one

possible outcome, and it is also possible to see mixed phenotypes throughout, or even

dominance of almost completely one phenotype, even without any molecular signaling

thresholding effects in place, but derived exclusively from the stochastic nature of

phenotypic selection in the model (data not shown).

Figure 7.9B shows a case of high estrogen thresholding; in this case, the ER+

dominated viable rim (red arrows) is substantially limited in axial advance rate due to high

estrogen uptake in this area (many ER+ cells lower the local estrogen concentration in this

region), while the ER− viable rim (right side) shows substantially faster axial invasion due

to low sensitivity to FGF signaling. Of note, the ER+ dominated viable rim is not

completely arrested in proliferation events, as estrogen may diffuse down the duct (in the

direction of the red arrows) from a higher estrogen concentration farther down the duct

axis (where there are no ER+ DCIS cells), which maintains some limited proliferation at

this location. Figure 7.9C shows a case of high FGF proliferation thresholds; in this case,

the DCIS population is dominated by the ER+ phenotype, likely due to early stage

establishment of a completely ER+ viable rim early in the simulation.

Lastly, Figure 7.9D shows a case of a mixed phenotype viable rim (green arrows),

in the case of a high estrogen threshold (measurement data from this test is not shown). In

this case, the viable rim was able to adapt to the threshold limitations. The ER− phenotype,

while not limited by the high estrogen threshold, and further stimulated into proliferation

by AREG production in the adjacent ER+ population (through the AREGFGF epithelial

to stromal pathway), overtook the ER+ population in this case, and thus transitioned to a



www.manaraa.com

151

viable rim of only the phenotype not limited by signaling thresholds (ER−, blue arrow).

This suggests that the mixture of phenotypes of DCIS may serve as a tumor adaptation

mechanism, allowing for tumor progression even when conditions are unfavorable for one

or more phenotypes.

V. Discussion

Our model has shown good agreement with biologically reported values in the

results presented, which we take to be affirmative evidence of its accurate replication of

the disease state and predictive potential. With the model calibrated as presented, we note

that the early exponential growth state of the disease is short-lived, with a rapid transition

to a linear growth behavior. Clinically, the early stages of DCIS are hypothesized to be

subdivided into hyperplasia and atypical hyperplasia, before transition to a full DCIS state

[4]. Due to the short duration our model remains in the exponential growth phase, we justify

our decision to lump all into our definition of DCIS, as the transition through the early

stages was observed to occur rapidly.

We observed that the initial number of stem cells produced by an EMT transition

at time t=0 only affected DCIS population dynamics at early times after the initial DCIS

invasion event. This effect is due to the cell density limitations we impose on the system.

At early times after DCIS initiation, an exponential growth is observed; at this time, the

CSC number serves as the base of the exponential behavior, and has a direct influence on

the rate of DCIS population increase. However, once the population reaches a cell number

and density where proliferation becomes density-restricted, the early effects of the CSC

niche on DCIS cell population are significantly reduced. This effect is contingent on all
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CSCs occurring within a single niche, however; when multiple CSC niches are initiated

apart from one another along the duct axis, this effect is mitigated until the DCIS

populations resulting from each niche grow together into a confluent tumor (data not

shown).

Cell density limits both the proliferation events within the CSC niche, as well as in

the DCIS population located within the duct cavity. Under these conditions, DCIS invasion

becomes primarily a function of proliferation events within the leading edge of the tumor,

where cell density is lowest (due to the cell-free region in the duct opposite the DCIS mass,

where the tumor has not yet invaded). This is opposed to early times after DCIS initiation,

where the cell population may undergo a true population doubling each cell cycle

(exponential growth), until cell density effects arrest this behavior. Subsequent to the

exponential growth phase, DCIS axial invasion is accomplished through proliferation

events in the leading edge of the tumor. This results in a linear duct invasion rate, at the

leading edge remains of a somewhat consistent thickness, and may thus invade at most its

own thickness per cell cycle, provided all progenitors in the leading edge undergo mitosis

in a cell cycle. Because cell density is similar in all duct sizes (i.e. a cell on the absolute

leading edge of the tumor may be completely surrounded by cells in the direction of the

main tumor mass, while completely devoid of neighbors in the opposite axial direction,

and in this case may experience ~50% neighboring cell density), the viable rim (under the

same density conditions in all duct diameters) is of a similar number of cell layers thick in

all duct diameters. This results in a consistent axial duct invasion rate in all diameters

tested, but a larger total population increase in a larger duct due to the larger number of

cells required to advance the tumor the same distance through a larger volume.
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Necrosis functions as a relief mechanism for hypoxic conditions in the tumor,

allowing a slight rebound of local oxygen concentration subsequent to necrotic cell death.

In the tumor, this likely plays a key role in the natural selection mechanism for a hypoxia-

resistant phenotype, where hypoxia-resistant cells are able to outlast the necrotic transition

of their hypoxia-susceptible neighbors long enough to benefit from this transition. We note

that we assume an equal rate of diffusion in the calcified region (and region of spilled but

not yet calcified cytoplasmic contents) in this work − this is likely an overestimate, as

oxygen diffusion is expected to be significantly reduced through hydroxyapatite. This will

further reduce the hypoxic conditions, as oxygen is not lost to diffusion in regions of

calcification (although we note that, due to lack of oxygen consumption in this location,

the oxygen concentration profile reaches a steady-state in the calcified region in our model,

and thus this effect may not be significant over time). Interestingly, we observe a

predictable, regular distance between the extent of calcification (as would be seen in

diagnostic tools in a patient, i.e. mammography) and the leading edge of the tumor. This

may allow us to make predictions of an effective surgical margin around ducts where

calcification is observed with our future modeling efforts.

Molecular signaling thresholds functioned as expected, with high thresholds

limiting proliferation in the associated phenotype. Of particular interest, as shown in in

Figure 7.9C, the DCIS was seen to be completely composed of the ER+ phenotype.

Although there are ER− cells near the CSC niche, proliferation at early times in the ER+

population resulted in the viable rim being completely composed of ER+ cells, and thus

they advance the tumor into a completely ER+ phenotype. This ER+ population produced

AREG, and thus the local FGF concentrations were plentiful to allow for ER– phenotype
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proliferation, but this did not occur as there were none of this phenotype in the leading

edge. This demonstrates an important concept: early molecular signing thresholds (or

other events early in the DCIS initiation) play an important role in establishing the

phenotypes found in the tumor leading edge. If the leading edge is only composed of one

phenotype after this period, then the DCIS advanced by these cells will be only this

phenotype, even if the molecular signaling would support proliferation in the other

phenotype at this location. This indicates that it is likely that future phenotypic diversity in

the DCIS population may be due to further mutations within the cancer phenotype, or may

also be due to de-differentiation events. It is established that de-differentiation events do

occur in mammary cancers (i.e. a cell becomes less differentiated, potentially back to a

stem-like phenotype) [52], although at this stage we do not include this phenomena in our

model.

Even more interesting is the tumor adaptation effect observed in Figure 7.9D. In

this case, one phenotype becomes dominant when a selective pressure results in reduced

proliferation in the other phenotype. In this way, the tumor may adapt to be better suited to

survival in its host − likely with ER+ favored in environments with high estrogen

production, and ER− in cases of higher FGF signaling. Because estrogen functions through

a system-wide endocrine mechanism, but FGF is a function of the local stroma, these two

signaling pathways may experience different disruptions in a host, and these may favor one

phenotype, analogous to sensitivity mutations in the different cell phenotypes in our model.

Although this may potentially serve as a tumor adaptation mechanism, it does so at a cost

as currently implemented in our model − it costs the tumor the phenotypic diversity that

allowed it to make the adaptation, making it impossible for the viable rim to adapt back in
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our model should molecular concentrations shift to favor the opposite phenotype. This

effect could be overcome by a phenotypic plasticity mechanism (such as a de-

differentiation pathway, resulting in more cancer stem-type cells), or by chemotaxis

effects. In our next modeling work, we will add these effects to this model (among other)

to further test this hypothesis, as well as comparing our results to in vivo animal data and

studying a transition from an in situ cancer to an invasive cancer.

Table 7.1: Important model parameter baseline values. When not readily available in the
literature, diffusion constants were estimated either through interpolation from values
from structurally similar molecules (*) or from known values based on relative molecular
weights (**). Other uncited values were determined from model calibration. We have
reduced the value for stem cell symmetric proliferation by 1% from [56].

Model Parameter Baseline Value Reference
Hypoxia threshold 1/3 normoxia [39, 44]
Doxygen 2.5 × 10-6cm2s-1 [37]
Blood oxygen concentration 100 mmHg [39]
Destrogen 2.45 × 10-6cm2s-1 *
DAREG 3.18 × 10-7cm2s-1 [53]**
Proliferation rate ≤ 1 per 16 hours
Cell cycle time 16 hours [54, 55]
Progenitor symmetric proliferation 100%
Proliferation cycles before differentiation 50 [41, 42]
Stem cell symmetric proliferation probability 12% [56]
Spontaneous differentiation probability 0.0
Mature mammary cell radius 5µm [38, 55]
Healthy cell oxygen uptake rate 45 attoMol*cell-1sec-1 [38]
Cancer cell oxygen uptake rate 4.5x healthy cell rate [38]
Hypoxia time to necrosis 12 hours [45]
Lysis volume increase due to swelling 100% [48, 49]
Lysis time 6 hours [46]
Calcified volume % of pre-lysis cell volume 30% [50]
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CHAPTER 8

Conclusions and Future Directions

Over the last chapters, we have examined several examples of hybrid, multiscale

models of the mammary gland system, applied to both pubertal development and to study

of a stage zero breast cancer, ductal carcinoma in situ. These models were implemented in

a biologically inspired order, following the natural pattern of starting with early-life

development followed by a subsequent later in life transition to a disease state. We gained

valuable insights into quantified parameters and behaviors at the sub-organ scale, which

were implemented in each subsequent modeling step to more fully and correctly describe

the behaviors of interest. At each step, the new or improved model was validated against

the literature through comparison of model output to other, independent literature-reported

quantities, unrelated to model inputs. This important step lends validity to the model and

the quantities and assumptions included. A model’s ability to take a set of underlying

biological rules and principles, and by combining them through sound mathematical and

quantitative relations, to then solve for a quantity independent of (but related to) these

values demonstrates the biological relevance of model assumptions and predictions.

In the case of the models presented here, both TEB models were able to take a set

of rules for cell phenotypic hierarchies, biologically supported statistical information about

the dynamics of cell proliferation probabilities, and molecular signaling pathways, and then

combine these rules together to accurately reproduce biologically relevant duct elongation

rates and cell phenotype distributions within the mature duct. Likewise, the DCIS model
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was able to successfully reproduce DCIS axial invasion rates using a similar set of rules.

This approach is analogous to the biological system being studied – a set of molecular,

sub-cellular, and cell-scale rules, when combined together under the proper conditions,

leads to the biological result of the development of the tissue (TEB) or disease state (DCIS).

In this way, models are validated through their successful ability to reproduce both the sub-

processes and the associated overall system-wide (in this case, taking the system to be the

tissue of interest) behavior, as observed in nature. Indeed, this biologically relevant

connection between model inputs and the resultant output is as should be expected, and

provides validation of the rules and mathematical implementations chosen by the modelers,

through demonstration of successful reproduction of known biological quantities.

The ability of mathematical models to replicate system-wide biological behaviors

based on an equation based representation of the underlying mechanisms in the system

suggests further power in the field of mathematical modeling, however: the ability to be

used as a predictive tool of system response to both internal perturbations and external

stimuli. This step requires absolute certainty in the reliability of the model, and mandates

thorough testing of the model against biological data. In the models presented in this work,

validation against literature-supported data was successfully achieved, but our efforts were

limited by the quantified values we found already existent in the literature. To address this

shortcoming, we are currently building relationships with wet-lab researchers, who will be

able to design and conduct experiments in order to help provide needed quantification of

variables in the models, provide expertise on the biological system (e.g. which important

biological factors should be added to the models, and what resultant behaviors we should

hope to observe). Specifically, these relationships will include increased access to animal
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model data, quantified measurements of quiescent vs. proliferative states, as well as animal

model data on early stage DCIS. This interaction will lend greater validity, accuracy, and

predictive power to our models, while simultaneously allowing us to provide new insights

we observe in simulation results for validation in a living system.

This collaborative effort will prove beneficial to both sides, and hopefully allow

our models to receive sufficient validation to be implemented as predictive tools. One

exciting avenue in this direction is in the area of DCIS treatment, which is now

accomplished through a combination or surgical resection and other treatment methods,

including post-surgical radiation therapy. Significant progress has been made in targeting

the ER+ breast cancer (e.g. tamoxifen, aromatase inhibitors), resulting in more positive

prognosis in ER+ breast cancers relative to cancers negative for these receptors, and

HER2+ tumors may also be targeted, e.g. trastuzumab (although this pathway is not

included in this study, we mention it here for sake of completeness). However, such novel

treatments for the triple negative breast cancer phenotype have remained elusive, resulting

in unfavorable patient prognosis relative to ER+ and HER2+ cases. Insights into the

interplay of signaling mechanisms and the resultant phenotypic distribution within the

DCIS population may allow the tumor to be “tuned” through novel treatment methods to a

phenotype that has a more favorable response to these therapies. Likewise, further insights

into the relationship between DCIS calcification (as obtainable through standard diagnostic

methods, e.g. mammography) and the full tumor extent may help increase precision in

surgical margins, allowing for greater reliability of complete surgical resection while

minimizing patient trauma and treatment impact. Subsequent to further model validation,

we will explore these areas (among others) in order to shed new light onto quantified



www.manaraa.com

164

parameters of interest, with the goal of clinically relevant discoveries that may help

improve treatment and patient outcomes.
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